Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Water  /  Vol: 15 Par: 21 (2023)  /  Artículo
ARTÍCULO
TITULO

Study on the Transient Flow Characteristics of a Hump Water Pipeline Based on the Random Distribution of Bubbles

Qingbo Wang    
Jianyong Hu    
Mingming Song    
Hui Shen    
Yu Zhou    
Dongfeng Li and Feng Xie    

Resumen

Aiming at establishing the transient flow characteristics of gas?liquid two-phase flow in high-undulation water pipelines, based on the bubble distribution law measured using physical tests, the bubble distribution law function was input into the hump-pipe fluid domain model, and CFD numerical simulation was carried out for different flow rates and different air contents. The CLSVOF two-phase flow model and the RNG k-e turbulence model were used to analyze the flow pattern evolution and pressure pulsation propagation in the process of gas?liquid two-phase flow through a hump pipe. The results show that the bubble size has a lognormal distribution, the equivalent diameter is between 3 mm and 10 mm, and the evolution of the flow pattern in the hump pipe is complex and violent. In the horizontal pipe section, there are three main flow patterns: bubble flow, wavy flow and segment plug flow. In the vertical pipe, there are two main flow patterns, slug flow and churning flow, and the flow pattern is affected by the flow rate and the air content rate. When air bubbles or air pockets in the pipeline flow through a certain area, this leads to a steep increase and decrease in the pressure pulsation amplitude in the region, and the pressure fluctuation is extremely frequent. Compared with the water flow rate, the air content is the main factor affecting the relative pressure pulsation amplitude under the condition of a 0.15-air content operating mode, which is generally approximately two to six times that of the 0-air content operating mode. The results of the research should facilitate the prediction of stagnant gas pipeline system bursts and water hammer protection, providing a theoretical basis and calculation parameters.

 Artículos similares

       
 
Livinia Saputra, Sang Hyun Kim, Kyung-Jin Lee, Seo Jin Ki, Ho Young Jo, Seunghak Lee and Jaeshik Chung    
The vadose zone acts as a natural buffer against groundwater contamination, and thus, its attenuation capacity (AC) directly affects groundwater vulnerability to pollutants. A regression model from the previous study predicting the overall AC of soils ag... ver más
Revista: Hydrology

 
Antoine Picard, Florent Barbecot, Gérard Bardoux, Pierre Agrinier, Marina Gillon, José A. Corcho Alvarado, Vincent Schneider, Jean-François Hélie and Frédérick de Oliveira    
Accurate discharge measurement is mandatory for any hydrological study. While the ?velocity? measurement method is adapted to laminar flows, the ?dilution? method is more appropriate for turbulent streams. As most low-gradient streams worldwide are neith... ver más
Revista: Hydrology

 
Xiaolei Liu, Kan Wang, Yuru He, Yang Ming and Hao Wang    
To extend initial ignition-related fire prevention in ship engine room, this work presents a case study of marine diesel leakage for identifying accidental ignition by hot surface. Based on a self-designed experimental platform, a full-scale innovative e... ver más

 
Dongfeng Yan, Zehang Zhao, Anchen Song, Fengming Li, Lu Ye, Ganchao Zhao and Shan Ma    
The fluidic pintle nozzle, a new method to control the thrust of a solid rocket motor, has been proposed in recent years by combining the pintle with the aerodynamic throat (fluidic throat). The study of static characteristics has proved that it has a re... ver más
Revista: Aerospace

 
Jochen Kämpf    
Using a three-dimensional coupled physical?biological model, this paper explores the effect that short-lived wind events lasting a few days in duration have on the creation of phytoplankton blooms in island wakes. Findings show that wind-induced coastal ... ver más