Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 19 (2023)  /  Artículo
ARTÍCULO
TITULO

Heat Transfer Investigation in Plus-Shaped Enclosure Using Power Law Fluid: A Finite Element Approach

Imran Shabir Chuhan    
Jing Li    
Ziyu Guo    
Muhammad Yaqub and Malik Abdul Manan    

Resumen

The main purpose of this study is to investigate the thermal behavior of power law fluid within a plus-shaped cavity under the influence of natural convection, also taking into account the Darcy number and magnetohydrodynamics (MHD). The problem is formulated as a system of partial differential equations considering the power law fluid?s rheological behavior. The left-side walls are maintained at a specific low temperature while the lower and the right-side walls have uniform maximum temperatures. The boundary condition is designed to enhance heat transfer efficiency within the cavity, utilizing advanced thermal insulation methodologies. Finite element method (FEM) simulations are conducted, and a grid independence test is performed to validate the results. The impact of relevant parameters on the variation in momentum and thermal distributions is investigated using streamline and isothermal contour plots. The results indicate that as the Rayleigh number increases, the kinetic energy also increases, whereas the viscosity and circulation zones expand with an increase in the power law index. The Nusselt number exhibits a higher value in the shear-thinning case (n = 0.7) compared to the Newtonian (n = 1) and shear-thickening (n = 1.2) cases. This empirical observation underscores the vital role that fluid rheology plays in molding the overall heat transfer performance within the cavity. The study concludes that there is a distinct correlation between the heat transfer rate and the Rayleigh number (Ra). As Ra increases, there is a significant improvement in the heat transfer rate within the flow domain. Furthermore, the fluid behavior and heat transfer performance within the cavity are significantly influenced by the presence of magnetohydrodynamics (MHD) and the Darcy effect.

 Artículos similares

       
 
Yuyang Liu and Xian Yi    
The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing perfor... ver más
Revista: Aerospace

 
Xin Wei, Xiaojuan Shi, Honghu Ji and Jinlong Hu    
In order to study the infrared radiation characteristics of an air-breathing hypersonic vehicle powered by a scramjet, it is necessary to solve the internal and external flow field of the air-breathing hypersonic vehicle. Owing to the complexity and diff... ver más
Revista: Aerospace

 
Wenjie Shen, Suofang Wang and Xiaodi Liang    
Impellers are utilized to increase pressure to ensure that a radial pre-swirl system can provide sufficient cooling airflow to the turbine blades. In the open literature, the pressurization mechanism of the impellers was investigated. However, the effect... ver más
Revista: Aerospace

 
Xiaoyang Li, Xiaohui Lin, Changyue Xu and Zhuopei Li    
The calculation of a cockpit?s transient thermal load is important for determining the capacity of the cockpit environmental control system, ensuring the safety of electronic equipment and increasing the health and comfort of cockpit occupants. According... ver más
Revista: Aerospace

 
Kirttayoth Yeranee, Yu Rao, Chao Xu, Yueliang Zhang and Xiyuan Su    
Additive manufacturing allows the fabrication of relatively complex cooling structures, such as triply periodic minimal surface (TPMS), which offers high heat transfer per unit volume. This study shows the turbulent flow heat transfer and thermal stress ... ver más
Revista: Aerospace