Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 18 (2023)  /  Artículo
ARTÍCULO
TITULO

Combined Optimization of Maintenance Works and Crews in Railway Networks

Nikoletta Gkonou    
Emmanouil Nisyrios and Konstantinos Gkiotsalitis    

Resumen

This study develops optimal maintenance schedules for train lines, a critical endeavor ensuring the safety, efficiency, and reliability of railway networks. The study addresses the combined scheduling problem of maintenance works and crews on the railway networks. The baseline scheduling model is initially established with the primary objective of allocating maintenance tasks efficiently while adhering to pertinent constraints, encompassing task grouping and cost minimization. Subsequently, this baseline model is enhanced through the integration of crew scheduling, wherein work crews are strategically assigned to execute predefined tasks, thereby facilitating effective workload distribution. The combined maintenance work and crew scheduling problem is mathematically formulated as a binary linear programming model, enabling the attainment of globally optimal solutions. Comparing the outcomes of our enhanced model, which incorporates both maintenance works and crew schedules, with the baseline model that solely addresses maintenance works, we reveal that task grouping in accordance with predefined conditions leads to reduced overall costs by minimizing maintenance duration during various periods. Additionally, the judicious distribution of workload among the crews ensures comprehensive coverage of all essential tasks. These findings underscore the significance of our proposed approach in enhancing the operational efficacy and economic viability of railway maintenance scheduling, thereby offering valuable insights for practical implementation and future research endeavors.

 Artículos similares

       
 
Vedat Dogan and Steven Prestwich    
In a multi-objective optimization problem, a decision maker has more than one objective to optimize. In a bilevel optimization problem, there are the following two decision-makers in a hierarchy: a leader who makes the first decision and a follower who r... ver más
Revista: Algorithms

 
Anton Kolosnitsyn, Oleg Khamisov, Eugene Semenkin and Vladimir Nelyub    
We consider the Golden Section and Parabola Methods for solving univariate optimization problems. For multivariate problems, we use these methods as line search procedures in combination with well-known zero-order methods such as the coordinate descent m... ver más
Revista: Algorithms

 
Ying-Qing Guo, Meng Li, Yang Yang, Zhao-Dong Xu and Wen-Han Xie    
As a typical intelligent device, magnetorheological (MR) dampers have been widely applied in vibration control and mitigation. However, the inherent hysteresis characteristics of magnetic materials can cause significant time delays and fluctuations, affe... ver más
Revista: Information

 
Min Li, Zhirui Cui and Tianyu Fan    
In order to further improve the accuracy of flood routing, this article uses the Variable Exponential Nonlinear Muskingum Model (VEP-NMM), combined with the Artificial Rabbit Optimization (ARO) algorithm for parameter calibration, to construct the ARO-VE... ver más
Revista: Water

 
Shoffan Saifullah and Rafal Drezewski    
Accurate medical image segmentation is paramount for precise diagnosis and treatment in modern healthcare. This research presents a comprehensive study of the efficacy of particle swarm optimization (PSO) combined with histogram equalization (HE) preproc... ver más
Revista: Applied Sciences