Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 18 (2023)  /  Artículo
ARTÍCULO
TITULO

Enhancing the Strength of Mine Residue Soil by Bioremediation Combined with Biopolymers

António A. S. Correia    
Joana B. Caldeira    
Rita Branco and Paula V. Morais    

Resumen

Traditional soil stabilization methods are usually associated with high energy consumption, carbon emissions, and long-term environmental impact. Recent developments have shown the potential use of bio-based techniques as eco-friendly alternatives for soil stabilization. The present work studies the effects of the addition of the biopolymers xanthan gum (XG) or carboxymethyl cellulose (CMC) to a mine residue soil, combined or not with biostimulation and bioaugmentation techniques, in terms of compressive stress?strain behavior. Unconfined compressive strength (UCS) tests were performed on previously disturbed samples (two cycles of percolation, extraction and homogenization) to evaluate if the biostimulation and bioremediation remain active in a real adverse scenario. The results allowed for us to conclude that both biopolymers, when applied individually (with a content of 1%), are effective stabilizers (CMC allows for unconfined compressive strength increases of up to 109%), showing better results for CMC than Portland cement. The biostimulation of the autochthonous community of the mine residue soil was revealed to be a non-effective technique, even when combined with the biopolymers. However, good results were observed when the bioaugmentation was combined with xanthan gum, with unconfined compressive strength improvements of up to 27%. The study revealed that these bio-based techniques are promising soil engineering techniques, offering environmentally friendly alternatives for sustainable soil stabilization and contributing to a greener and more sustainable future.

 Artículos similares

       
 
Yuyang Liu and Xian Yi    
The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing perfor... ver más
Revista: Aerospace

 
Yurim Han, Heebo Ha, Chunghyeon Choi, Hyungsub Yoon, Paolo Matteini, Jun Young Cheong and Byungil Hwang    
Carbon nanotube (CNT)-based electrodes in flexible supercapacitors have received significant attention in recent years. Carbon nanotube fiber fabrics (CNT-FF) have emerged as promising materials due to their high surface area, excellent conductivity, and... ver más
Revista: Applied Sciences

 
Ganjar Alfian, Muhammad Qois Huzyan Octava, Farhan Mufti Hilmy, Rachma Aurya Nurhaliza, Yuris Mulya Saputra, Divi Galih Prasetyo Putri, Firma Syahrian, Norma Latif Fitriyani, Fransiskus Tatas Dwi Atmaji, Umar Farooq, Dat Tien Nguyen and Muhammad Syafrudin    
Analyzing customer shopping habits in physical stores is crucial for enhancing the retailer?customer relationship and increasing business revenue. However, it can be challenging to gather data on customer browsing activities in physical stores as compare... ver más
Revista: Information

 
Jaeeun Lee, Hongseok Choi and Jongnam Kim    
Welding is a crucial manufacturing technique utilized in various industrial sectors, playing a vital role in production and safety aspects, particularly in shear reinforcement of dual-anchorage (SRD) applications, which are aimed at enhancing the strengt... ver más
Revista: Applied Sciences

 
Lu Sun, Shuguo Gao, Tianran Li, Jiaxin Yao, Ping Wang and Jianhao Zhu    
The instability of the winding-cushion structure is one of the primary causes of transformer failures. Insulation cushion compression and offset are the predominant forms leading to structural instability. Therefore, this paper, using the SFSZ7-31500/110... ver más
Revista: Applied Sciences