Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Infrastructures  /  Vol: 8 Par: 3 (2023)  /  Artículo
ARTÍCULO
TITULO

Adaptive Fault Diagnosis for Simultaneous Sensor Faults in Structural Health Monitoring Systems

Thamer Al-Zuriqat    
Carlos Chillón Geck    
Kosmas Dragos and Kay Smarsly    

Resumen

Structural health monitoring (SHM) is a non-destructive testing method that supports the condition assessment and lifetime estimation of civil infrastructure. Sensor faults may result in the loss of valuable data and erroneous structural condition assessments and lifetime estimations, in the worst case with structural damage remaining undetected. As a result, the concepts of fault diagnosis (FD) have been increasingly adopted by the SHM community. However, most FD concepts for SHM consider only single-fault occurrence, which may oversimplify actual fault occurrences in real-world SHM systems. This paper presents an adaptive FD approach for SHM systems that addresses simultaneous faults occurring in multiple sensors. The adaptive FD approach encompasses fault detection, isolation, and accommodation, and it builds upon analytical redundancy, which uses correlated data from multiple sensors of an SHM system. Specifically, faults are detected using the predictive capabilities of artificial neural network (ANN) models that leverage correlations within sensor data. Upon defining time instances of fault occurrences in the sensor data, faults are isolated by analyzing the moving average of individual sensor data around the time instances. For fault accommodation, the ANN models are adapted by removing faulty sensors and by using sensor data prior to the occurrence of faults to produce virtual outputs that substitute the faulty sensor data. The proposed adaptive FD approach is validated via two tests using sensor data recorded by an SHM system installed on a railway bridge. The results demonstrate that the proposed approach is capable of ensuring the accuracy, reliability, and performance of real-world SHM systems, in which faults in multiple sensors occur simultaneously.

 Artículos similares

       
 
Longde Wang, Hui Cao, Zhichao Cui and Zeren Ai    
Marine engines confront challenges of varying working conditions and intricate failures. Existing studies have primarily concentrated on fault diagnosis in a single condition, overlooking the adaptability of these methods in diverse working condition. To... ver más

 
Tao Jiang, Yan Yan and Shuang-He Yu    
This paper is concerned with the trajectory tracking control of unmanned surface vehicles (USVs) subject to input quantization, actuator faults and dead zones. In scenarios with dense marine facilities, there are constraints on the tracking performance a... ver más

 
Jiawen Li, Yujia Wang, Haiyan Li, Xing Liu and Zhengyu Chen    
Ocean currents, mechanical collisions and electronic damage can cause faults in an autonomous underwater vehicle (AUV), including sensors and thrusters. For such problems, this paper designs a fault-tolerant controller that is independent of the results ... ver más

 
Jun Li, Hongchao Wang, Simin Li, Liang Chen and Qiqian Dang    
To extract the weak fault features hidden in strong background interference in the event of the early failure of rolling bearings, a two-stage based method is proposed. The broadband noise elimination ability of an adaptive morphological filter (AMF) and... ver más
Revista: Applied Sciences

 
Junfeng Wu, Huan Wang, Shanshan Li and Shuguang Liu    
This paper investigates the distance-based formation and cooperative path-following control problems for multiple fixed-wing unmanned aerial vehicles (UAVs). In this study, we design the distance-based formation control structure to achieve the virtual l... ver más
Revista: Aerospace