Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Offshore Wind Energy Resource in the Kingdom of Morocco: Assessment of the Seasonal Potential Variability Based on Satellite Data

Aïssa Benazzouz    
Hassan Mabchour    
Khalid El Had    
Bendahhou Zourarah and Soumia Mordane    

Resumen

This study provides a first estimate of the offshore wind power potential along the Moroccan Atlantic shelf based on remotely sensed data. An in-depth knowledge of wind potential characteristics allows assessment of the offshore wind energy project. Based on consistent daily satellite data retrieved from the Advanced Scatterometer (ASCAT) spanning the period from 2008 to 2017, the seasonal wind characteristics were statistically analyzed using the climatological Weibull distribution functions and an assessment of the Moroccan potential coastal wind energy resources was qualitatively analyzed across a range of sites likely to be suitable for possible exploitation. Also, an atlas of wind power density (WPD) at a height of 80 m was provided for the whole Moroccan coast. An examination of the bathymetrical conditions of the study area was carried out since bathymetry is among the primary factors that need to be examined with the wind potential during offshore wind project planning. The results were presented based on the average wind intensity and the prevailing direction, and also the wind power density was shown at monthly, seasonal and interannual time scale. The analysis indicated that the coastal wind regime of the southern area of Morocco has the greatest energy potential, with an average power density which can reach in some places a value around 450 W/m2 at heights of 10 m and 80 m above sea level (a.s.l) (wind turbine hub height) more particularly in the south of the country.

 Artículos similares

       
 
Mingsheng Chen, Lenan Yang, Xinghan Sun, Jin Pan, Kai Zhang, Lin Lin, Qihao Yun and Ziwen Chen    
Evidence points to increasing the development of floating wind turbines to unlock the full potential of worldwide wind-energy generation. Barge-type floating wind turbines are of interest because of their shallow draft, structural simplicity, and moonpoo... ver más

 
Rafael Pacheco-Blazquez, Julio Garcia-Espinosa, Daniel Di Capua and Andres Pastor Sanchez    
This paper delves into the application of digital twin monitoring techniques for enhancing offshore floating wind turbine performance, with a detailed case study that uses open-source digital twin software. We explore the practical implementation of digi... ver más

 
Tianhui Fan, Jianhu Fang, Xinkuan Yan and Yuan Ma    
The floating offshore wind turbine provides a feasible solution for the development of renewable ocean energy. However, the sizeable rotor diameter of the wind turbine results in large wind heeling moments and pitch amplitude. It will increase the struct... ver más

 
Fangdi Ye, Jijian Lian, Tianrun Xiao, Dongzhi Xiong, Haijun Wang, Yaohua Guo and Nan Shao    
To enhance the safety of the in-water sinking operation for an integrated system, including a bucket foundation (BF), tower, and rotor nacelle assembly (RNA), in complex marine environmental conditions, a model test of in-water sinking for an offshore wi... ver más

 
Dong-Ju Kim, Young-Suk You and Min-Young Sun    
Offshore wind turbines (OWTs) are exposed to cyclic loads resulting from wind, waves, and rotor rotation. These loads can induce resonance, thereby significantly increasing the amplitude of the structure and accelerating the accumulation of fatigue damag... ver más