Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

Properties of Mortar Containing Recycled Fine Aggregate Modified by Microbial Mineralization

Mian Luo    
Junjie Dai    
Ziqi Ding and Ye Liu    

Resumen

Microbial-induced mineralization deposition was used to improve the quality of the recycled fine aggregate (RFA) in this paper. In order to obtain a better improvement effect, the microbial mineralization conditions were first optimized. The effect of the pH value, temperature, bacterial concentration and calcium ion concentration on the mineralization ability of bacteria were investigated. The optimal microbial mineralization conditions were selected for the treatment of RFA and the microbial mineralization modification effect of RFA was evaluated based on the water absorption and crushing index. In addition, the natural fine aggregate (NFA), unmodified RFA and modified RFA were made into ordinary mortar, recycled mortar and modified recycled mortar, respectively. The workability, mechanical properties and chloride ion penetration resistance of mortars was investigated. Meanwhile, the precipitations formed by microbial mineralization were characterized using a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The pore structure of mortars was analyzed using the mercury intrusion porosimeter (MIP). The results showed that the bioprecipitations were mainly calcite calcium carbonate and the quality of the RFA was improved by microbial-induced calcium carbonate deposition. The water absorption and crushing index of the modified RFA decreased by 25.7% and 4.2%, respectively. Compared with the crushing index, the water absorption of the RFA was improved more obviously. The workability, mechanical performance, chloride ion penetration resistance and pore structure of the modified recycled mortar was improved. Compared with the recycled mortar, the fluidity of the modified recycled mortar was 7.3% higher, the compressive strength of 28 d was 7.0% higher and the 6 h electric flux was 18.8% lower. The porosity of the ordinary mortar, recycled mortar and modified recycled mortar was 16.49%, 20.83% and 20.27%, respectively. The strengthening of the modified recycled mortar performance may be attributed to the improvement of the mortar microstructure due to the enhancement of the RFA quality after the biotreatment.

 Artículos similares

       
 
Bruna A. Silva, Ana Paula Ferreira Pinto, Augusto Gomes and António Candeias    
This paper evaluates the influence of water content and mixing conditions (mixing time and sequence of addition of the constituents) on the fresh state properties of lime-based materials and their impact on the hardened state properties. Higher water con... ver más
Revista: Buildings

 
Michal Kloiber, Dita Frankeová, Zuzana Slí?ková and Jirí Kunecký    
The paper describes a method of structural repair to damaged elements of protected timber houses. Emphasis is laid on minimum intervention in the valuable material that needs to be preserved to the maximum possible extent, especially without larger inter... ver más
Revista: Buildings

 
Rabeb Ayed, Salwa Bouadila, Safa Skouri, Laura Boquera, Luisa F. Cabeza and Mariem Lazaar    
By enhancing the thermal properties of cement-based building materials, energy consumption and carbon dioxide (CO2) emissions related to space conditioning in buildings can be alleviated. This study aims to present cement-based composites reinforced by t... ver más
Revista: Buildings

 
Temple Chimuanya Odimegwu, A. B. M. A. Kaish, Maslina Jamil, M. F. M. Zain, Asset Turlanbekov and Ahmed W. Al Zand    
This study evaluated the effect of alum sludge as an alternative to fly ash in fabricating geopolymer paste and mortar. The blending of this industrial waste (alum sludge and fly ash) is not only for the benefit of sustainable construction and disposal o... ver más
Revista: Buildings

 
Seyedsaleh Mousavinezhad, Judit M. Garcia, William K. Toledo and Craig M. Newtson    
For several decades, class F fly ash has been an attractive supplementary cementitious material, at least in part, due to its ability to reduce Portland cement consumption and mitigate alkali-silica reactions in concrete. However, fly ash availability is... ver más
Revista: Buildings