Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 7 (2022)  /  Artículo
ARTÍCULO
TITULO

Research on Output Voltage Stability of Non-Contact Excitation Motor

Ke Li    
Xuan Meng and Xiaodong Sun    

Resumen

In recent years, electric vehicles have developed rapidly. However, many electric cars are equipped with permanent magnet synchronous motors. Permanent magnet synchronous motors have several disadvantages: For example, permanent magnets tend to demagnetize at high temperatures. Electrically excited synchronous motors have several excellent properties. First, they are cheaper because the stator and rotor of the motor only need to be wound, which is more affordable than permanent magnets for speed regulation. When the armature current reaches the maximum value, the excitation current can also be adjusted for speed regulation, which makes the speed regulation more flexible. In the case of a short circuit, the corresponding direct-axis current is smaller than the quadrature-axis current, so the fault tolerance is better. Since the traditional electric excitation motor has brushes and slips rings, sparks will be generated during commutation. Therefore, a new excitation method is adopted to make non-contact motor excitation, and the motor operation is safer and more environmentally friendly. At the same time, to ensure that the output power of the non-contact electric excitation motor remains stable, a step-down circuit and power-type fast discrete terminal sliding mode control are added after the full-bridge rectifier circuit to make the excitation current and voltage output of the motor more stable. That is, the output power reaches a steady production. In this paper, an improved sliding mode control algorithm is used to stabilize the output voltage of the non-contact excitation motor, which can still ensure the stable output of the voltage when the equivalent load changes. It is confirmed that the non-contact excitation motor can be applied to various complex situations, and the proposed algorithm is simulated and experimentally verified to verify the accuracy of the proposed algorithm.

 Artículos similares

       
 
Jessica S. Ortiz, Richard S. Pila, Joel A. Yupangui and Marco M. Rosales    
The teaching?learning process developed was based on the effective integration of the Hardware in the Loop (HIL) technique to control a brewing process. This required programming the autonomous control of the system and uploading it to a physical control... ver más
Revista: Applied Sciences

 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water

 
Liu Han and Peng Liu    
In an effort to enhance the efficiency and safety of open-pit mines, this study explores the optimization of end slope road parameters and slope structures, specifically focusing on unmanned driving lanes. A significant aspect of the study is the develop... ver más
Revista: Applied Sciences

 
Sebastiano Gaiardelli, Damiano Carra, Stefano Spellini and Franco Fummi    
Efficiently managing resource utilization is critical in manufacturing systems to optimize production efficiency, especially in dynamic environments where jobs continually enter the system and machine breakdowns are potential occurrences. In fully automa... ver más
Revista: Applied Sciences

 
Hannes Zöschg    
Trash racks installed at hydropower plants cause head losses that reduce energy output. Previous research has thoroughly investigated head losses through both experimental and field studies. However, only a limited number of numerical studies have been p... ver más
Revista: Water