Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Information  /  Vol: 15 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Enhancing Network Intrusion Detection: A Genetic Programming Symbolic Classifier Approach

Nikola Andelic and Sandi Baressi ?egota    

Resumen

This investigation underscores the paramount imperative of discerning network intrusions as a pivotal measure to fortify digital systems and shield sensitive data from unauthorized access, manipulation, and potential compromise. The principal aim of this study is to leverage a publicly available dataset, employing a Genetic Programming Symbolic Classifier (GPSC) to derive symbolic expressions (SEs) endowed with the capacity for exceedingly precise network intrusion detection. In order to augment the classification precision of the SEs, a pioneering Random Hyperparameter Value Search (RHVS) methodology was conceptualized and implemented to discern the optimal combination of GPSC hyperparameter values. The GPSC underwent training via a robust five-fold cross-validation regimen, mitigating class imbalances within the initial dataset through the application of diverse oversampling techniques, thereby engendering balanced dataset iterations. Subsequent to the acquisition of SEs, the identification of the optimal set ensued, predicated upon metrics inclusive of accuracy, area under the receiver operating characteristics curve, precision, recall, and F1-score. The selected SEs were subsequently subjected to rigorous testing on the original imbalanced dataset. The empirical findings of this research underscore the efficacy of the proposed methodology, with the derived symbolic expressions attaining an impressive classification accuracy of 0.9945. If the accuracy achieved in this research is compared to the average state-of-the-art accuracy, the accuracy obtained in this research represents the improvement of approximately 3.78%. In summation, this investigation contributes salient insights into the efficacious deployment of GPSC and RHVS for the meticulous detection of network intrusions, thereby accentuating the potential for the establishment of resilient cybersecurity defenses.

 Artículos similares

       
 
Bo Zhao, Qifan Zhang, Yangchun Liu, Yongzhi Cui and Baixue Zhou    
In response to the need for precision and intelligence in the assessment of transplanting machine operation quality, this study addresses challenges such as low accuracy and efficiency associated with manual observation and random field sampling for the ... ver más
Revista: Applied Sciences

 
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi    
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ... ver más
Revista: Applied Sciences

 
Hao Gu, Ming Chen and Dongmei Gan    
The identification of gender in Chinese mitten crab juveniles is a critical prerequisite for the automatic classification of these crab juveniles. Aiming at the problem that crab juveniles are of different sizes and relatively small, with unclear male an... ver más
Revista: Applied Sciences

 
Dibo Dong, Shangwei Wang, Qiaoying Guo, Yiting Ding, Xing Li and Zicheng You    
Predicting wind speed over the ocean is difficult due to the unequal distribution of buoy stations and the occasional fluctuations in the wind field. This study proposes a dynamic graph embedding-based graph neural network?long short-term memory joint fr... ver más

 
Michalis K. Chondros, Anastasios S. Metallinos and Andreas G. Papadimitriou    
Ensuring sea surface tranquility within port basins is of paramount importance for safe and efficient port operations and vessels? accommodation. The present study aims to introduce a robust numerical model based on mild-slope equations, capable of accur... ver más