Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Information  /  Vol: 12 Par: 10 (2021)  /  Artículo
ARTÍCULO
TITULO

Detecting and Mitigating Adversarial Examples in Regression Tasks: A Photovoltaic Power Generation Forecasting Case Study

Everton Jose Santana    
Ricardo Petri Silva    
Bruno Bogaz Zarpelão and Sylvio Barbon Junior    

Resumen

With data collected by Internet of Things sensors, deep learning (DL) models can forecast the generation capacity of photovoltaic (PV) power plants. This functionality is especially relevant for PV power operators and users as PV plants exhibit irregular behavior related to environmental conditions. However, DL models are vulnerable to adversarial examples, which may lead to increased predictive error and wrong operational decisions. This work proposes a new scheme to detect adversarial examples and mitigate their impact on DL forecasting models. This approach is based on one-class classifiers and features extracted from the data inputted to the forecasting models. Tests were performed using data collected from a real-world PV power plant along with adversarial samples generated by the Fast Gradient Sign Method under multiple attack patterns and magnitudes. One-class Support Vector Machine and Local Outlier Factor were evaluated as detectors of attacks to Long-Short Term Memory and Temporal Convolutional Network forecasting models. According to the results, the proposed scheme showed a high capability of detecting adversarial samples with an average F1-score close to 90%. Moreover, the detection and mitigation approach strongly reduced the prediction error increase caused by adversarial samples.

 Artículos similares