Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Informatics  /  Vol: 8 Par: 4 (2021)  /  Artículo
ARTÍCULO
TITULO

Fault Detection of Bearing: An Unsupervised Machine Learning Approach Exploiting Feature Extraction and Dimensionality Reduction

Lucas Costa Brito    
Gian Antonio Susto    
Jorge Nei Brito and Marcus Antonio Viana Duarte    

Resumen

The monitoring of rotating machinery is an essential activity for asset management today. Due to the large amount of monitored equipment, analyzing all the collected signals/features becomes an arduous task, leading the specialist to rely often on general alarms, which in turn can compromise the accuracy of the diagnosis. In order to make monitoring more intelligent, several machine learning techniques have been proposed to reduce the dimension of the input data and also to analyze it. This paper, therefore, aims to compare the use of vibration features extracted based on machine learning models, expert domain, and other signal processing approaches for identifying bearing faults (anomalies) using machine learning (ML)?in addition to verifying the possibility of reducing the number of monitored features, and consequently the behavior of the model when working with reduced dimensionality of the input data. As vibration analysis is one of the predictive techniques that present better results in the monitoring of rotating machinery, vibration signals from an experimental bearing dataset were used. The proposed features were used as input to an unsupervised anomaly detection model (Isolation Forest) to identify bearing fault. Through the study, it is possible to verify how the ML model behaves in view of the different possibilities of input features used, and their influences on the final result in addition to the possibility of reducing the number of features that are usually monitored by reducing the dimension. In addition to increasing the accuracy of the model when extracting correct features for the application under study, the reduction in dimensionality allows the specialist to monitor in a compact way the various features collected on the equipment.

 Artículos similares

       
 
Samuel David Iyaghigba, Ivan Petrunin and Nicolas P. Avdelidis    
This approach is suitable for diagnostics of other systems in terms of real-time fault identification and mitigation. It will also be useful in the field of digital twin applications.
Revista: Applied Sciences

 
Salman Ibne Eunus, Shahriar Hossain, A. E. M. Ridwan, Ashik Adnan, Md. Saiful Islam, Dewan Ziaul Karim, Golam Rabiul Alam and Jia Uddin    
Accidents due to defective railway lines and derailments are common disasters that are observed frequently in Southeast Asian countries. It is imperative to run proper diagnosis over the detection of such faults to prevent such accidents. However, manual... ver más
Revista: AI

 
Myung-Kyo Seo and Won-Young Yun    
The steel industry is typical process manufacturing, and the quality and cost of the products can be improved by efficient operation of equipment. This paper proposes an efficient diagnosis and monitoring method for the gearbox, which is a key piece of m... ver más
Revista: Applied Sciences

 
Jia-Ling Xie, Wei-Feng Shi, Ting Xue and Yu-Hang Liu    
The fault detection and diagnosis of a ship?s electric propulsion system is of great significance to the reliability and safety of large modern ships. The traditional fault diagnosis method based on mathematical models and expert knowledge is limited by ... ver más

 
Xuerao Wang, Yuncheng Ouyang, Xiao Wang and Qingling Wang    
In this paper, a finite-time, active fault-tolerant control (AFTC) scheme is proposed for a class of autonomous surface vehicles (ASVs) with component faults. The designed AFTC framework is based on an integrated design of fault detection (FD), fault est... ver más