Resumen
The current challenges facing the aerospace domain require unconventional solutions, which could be sought in new configurations of future aircraft and spacecraft. The choice of optimal concepts requires the consideration of a significant amount of competing engineering solutions and takes place under conditions of uncertainty. Such a problem can be addressed by enhancing existing methods for analysis and synthesis solutions, such as the Advanced Morphological Approach (AMA). It uses morphological analysis to provide a more exhaustive overview of possible problem solutions, relies on expert evaluations of alternative technological options and applies clustering to the solution space. Although an intuitive method for structured concept generation, the AMA exposes the need for more robust problem structuring, improved objectivity of options evaluation and accounting for uncertainties. The current article suggests ways to overcome these challenges and their possible integration in the process. In particular, the integration of fuzzy sets is proposed to model uncertainties during the evaluation of technological options by the experts. The Fuzzy Analytical Hierarchy Process is adapted for integration into the AMA and for the conceptual design of aerospace vehicles.