Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 7 (2023)  /  Artículo
ARTÍCULO
TITULO

Aerodynamic Modeling of a Flying Wing Featuring Ludwig Prandtl?s Bell Spanload

Caleb Robb and Ryan Paul    

Resumen

This paper presents the aerodynamic modeling of a flying wing featuring Ludwig Prandtl?s bell spanload. The aerodynamic models are developed using a medium fidelity vortex-lattice method and using a Reynolds-Averaged Navier?Stokes computational fluid dynamics solution across a wide range of in-flow angle conditions. A methodology is developed to directly compare the spanwise force distributions from each method. Excellent agreement is seen in the prediction of spanwise inertial aerodynamic forces from each method, as well as in stability and control derivatives dominated by lift and moment contributions. The phenomenon of proverse yaw, caused by the twist distribution necessary to produce the bell spanload, is seen in the high and low-order analysis, with similar off-axis control power predicted.

 Artículos similares

       
 
Vinh Pham, Maxim Tyan, Tuan Anh Nguyen and Jae-Woo Lee    
Multi-fidelity surrogate modeling (MFSM) methods are gaining recognition for their effectiveness in addressing simulation-based design challenges. Prior approaches have typically relied on recursive techniques, combining a limited number of high-fidelity... ver más
Revista: Aerospace

 
Pietro Roncioni, Marco Marini, Oscar Gori, Roberta Fusaro and Nicole Viola    
The request for faster and greener civil aviation is urging the worldwide scientific community and aerospace industry to develop a new generation of supersonic aircraft, which are expected to be environmentally sustainable and to guarantee a high-level p... ver más
Revista: Aerospace

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace

 
Kun Zhang, Jianyao Yao, Wenxiang Zhu, Zhifu Cao, Teng Li and Jianqiang Xin    
The thermal protection system (TPS) represents one of the most critical subsystems for vehicle re-entry. However, due to uncertainties in thermal loads, material properties, and manufacturing deviations, the thermal response of the TPS exhibits significa... ver más
Revista: Aerospace

 
Neboj?a Lukic, Toni Ivanov, Jelena Svorcan and Aleksandar Simonovic    
A novel concept of morphing airfoils, capable of changing camber and thickness, is proposed. A variable airfoil shape, defined by six input parameters, is achieved by allowing the three spinal points (at fixed axial positions) to slide vertically, while ... ver más
Revista: Aerospace