Resumen
During the contact between the detumbling end-effector and large non-cooperative target, the recognition of impact pressure distribution is important for estimating the success rate of detumbling mission. To figure out the pressure trends, the ground experiments before the real space mission are necessary. However, due to the drawbacks of the pressure array-like sensor, dynamic characteristics of impact, and unavoidable noise, the accurate dynamic pressure distribution is hard to obtain. In this letter, we propose a recognition method, Impact Pressure Distribution Recognition. The proposed method can quickly generate dynamic impact pressure distribution without limitation on sensor accuracy through pressure data supplement and area correction based on contact model. The analysis results show that our method can efficiently recognize multiple distributed pressure and rebuild the more accurate impact pressure distribution.