Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of an Experimental Setup for Thermoplastic Fuselage Panel Testing in Combined Loading

Panagiotis D. Kordas    
George N. Lampeas and Konstantinos T. Fotopoulos    

Resumen

The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design concepts were evaluated through a numerical modeling strategy, which will be validated at the next stage using a targeted series of mechanical tests. A baseline experimental setup was developed after a number of candidate configurations were numerically investigated. The supporting elements along with the load introduction systems were defined in such a way as to represent the stiffness of a fuselage barrel section and its representative loading scenarios. The test rig and the investigated thermoplastic panel were numerically simulated to acquire valuable data pertaining to deformations and stresses when subjected to different loading combinations. Two distinct load cases were numerically examined: the first case was the in-plane compression of the thermoplastic panel, while the second case consisted of an internally applied pressure load introduced via an inflatable airbag, installed under the panel. Both loading scenarios were recreated inside the numerical virtual environment in order to examine two distinct stiffening configurations as well as to determine the maximum/limit loads to be used in the planned future experimental campaign. It was concluded that the designed test rig could successfully be used for the structural evaluation of fuselage panels under representative loading conditions.

 Artículos similares

       
 
Muhammad Sulman, Simone Mancini and Rasul Niazmand Bilandi    
Incorporating steps into a hull reduces the wetted surface, promoting improved hydrodynamic lift and reduced resistance at high speeds, provided that the step is designed appropriately. Traditional hydrodynamics studies rely on scaled model testing in to... ver más

 
Antoine Soloy, Carlos Lopez Solano, Emma Imen Turki, Ernesto Tonatiuh Mendoza and Nicolas Lecoq    
This study delves into the morphodynamic changes of pebble beaches in response to storm events, employing a combination of observational and numerical approaches. This research focuses on three extreme events, meticulously examining morhological changes ... ver más

 
Haoyu Cheng, Dan Zhao, Nay Lin Oo, Xiran Liu and Xu Dong    
Ice accretion is inevitable on fix-wing UAVs (unmanned aerial vehicles) when they are applied to surveillance and mapping over colder climates and arctic regions. Subsequent aerodynamic profile changes have caused the current interest in the better predi... ver más
Revista: Aerospace

 
Ge Wang, Chengke Li, Weiqiang Pu, Bocheng Zhou, Haiwei Yang and Zenan Yang    
A solid rocket motor (SRM) with a high aspect ratio that performs normally during ground tests may experience instability during flight. To address this issue, this study employs the pulse triggering method and the numerical approach of two-way fluid?str... ver más
Revista: Aerospace

 
Xianshan Liu, Xiaolei Luo, Shaowei Liu, Pugang Zhang, Man Li and Yuhua Pan    
The study of the seepage and heat transfer law of three-dimensional rough fractures is of great significance in improving the heat extraction efficiency of underground thermal reservoirs. However, the phase transition effects of fluids during the thermal... ver más
Revista: Water