Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Aerospace  /  Vol: 9 Par: 4 (2022)  /  Artículo
ARTÍCULO
TITULO

The Need for Multi-Sensor Data Fusion in Structural Health Monitoring of Composite Aircraft Structures

Agnes A. R. Broer    
Rinze Benedictus and Dimitrios Zarouchas    

Resumen

With the increased use of composites in aircraft, many new successful contributions to the advancement of the structural health monitoring (SHM) field for composite aerospace structures have been achieved. Yet its application is still not often seen in operational conditions in the aircraft industry, mostly due to a gap between research focus and application, which constraints the shift towards improved aircraft maintenance strategies such as condition-based maintenance (CBM). In this work, we identify and highlight two key facets involved in the maturing of the SHM field for composite aircraft structures: (1) the aircraft maintenance engineer who requires a holistic damage assessment for the aircraft?s structural health management, and (2) the upscaling of the SHM application to realistic composite aircraft structures under in-service conditions. Multi-sensor data fusion concepts can aid in addressing these aspects and we formulate its benefits, opportunities, and challenges. Additionally, for demonstration purposes, we show a conceptual design study for a fusion-based SHM system for multi-level damage monitoring of a representative composite aircraft wing structure. In this manner, we present how multi-sensor data fusion concepts can be of benefit to the community in advancing the field of SHM for composite aircraft structures towards an operational CBM application in the aircraft industry.

 Artículos similares

       
 
Wujia Li, Jiang Fan, Hongbin Xu, Wang Zhao, Qingze Meng and Yumin Su    
The issue of fatigue in modern hydraulic pipelines is increasingly severe, and there remains a lack of effective prediction methods for pipeline fatigue life. In practical engineering, hydraulic pipelines are primarily subjected to random excitation and ... ver más
Revista: Applied Sciences

 
Touraj Farsadi, Majid Ahmadi, Melin Sahin, Hamed Haddad Khodaparast, Altan Kayran and Michael I. Friswell    
In the field of aerospace engineering, the design and manufacturing of high aspect ratio composite wings has become a focal point of innovation and efficiency. These long, slender wings, constructed with advanced materials such as carbon fiber and employ... ver más
Revista: Aerospace

 
Spyridon Kilimtzidis and Vassilis Kostopoulos    
The race towards cleaner and more efficient commercial aviation demands novel designs featuring improved aerodynamic and structural characteristics, the main pillars that drive aircraft efficiency. Among the many proposed and introduced, the increase in ... ver más
Revista: Aerospace

 
Saiaf Bin Rayhan and Xue Pu    
Over the past two decades, aircraft crashworthiness has seen major developments, mainly with modern computing systems and commercial finite element (FE) codes. The structure and the material have been designed to absorb more kinetic energy to ensure enou... ver más
Revista: Aerospace

 
Yonglin Chen, Junming Zhang, Zefu Li, Huliang Zhang, Jiping Chen, Weidong Yang, Tao Yu, Weiping Liu and Yan Li    
Lightweight fiber-reinforced composite structures have been applied in aerospace for decades. Their mechanical properties are crucial for the safety of aircraft and mainly depend on manufacturing technologies such as autoclave, resin transfer molding and... ver más
Revista: Aerospace