Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

A Novel Optimal Sensor Placement Method for Optimizing the Diagnosability of Liquid Rocket Engine

Meng Ma    
Zhirong Zhong    
Zhi Zhai and Ruobin Sun    

Resumen

There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redundant sensors for improving the diagnosability and economics of PHM systems. To strike a balance between sensor cost, real-time performance and diagnosability of the fault diagnosis algorithm in LRE, this paper proposes a novel Optimal Sensor Placement (OSP) method. Firstly, a Kernel Extreme Learning Machine-based (KELM) two-stage diagnosis algorithm is developed based on a system-level failure simulation model of LRE. Secondly, hierarchical diagnosability metrics are constructed to formulate the OSP problem in this paper. Thirdly, a Hierarchy Ranking Evolutionary Algorithm-based (HREA) two-stage OSP method is developed, achieving further optimization of Pareto solutions by the improved hypervolume indicator. Finally, the proposed method is validated using failure simulation datasets and hot-fire test-run experiment datasets. Additionally, four classical binary multi-objective optimization algorithms are introduced for comparison. The testing results demonstrate that the HREA-based OSP method outperforms other classical methods in effectively balancing the sensor cost, real-time performance and diagnosability of the diagnosis algorithm. The proposed method in this paper implements system-level OSP for LRE fault diagnosis and exhibits the potential for application in the development of reusable LREs.

 Artículos similares

       
 
Yunfeng Wu, Qingkuo Li, Hang Yuan, Ziliang Li, Shiji Zhou, Ge Han and Xingen Lu    
High-pressure ratio centrifugal compressors? diffusers face challenges from high-velocity, non-uniform flow at the impeller outlet, decreasing efficiency and stall margin. To address this, this paper presents a novel vaned diffuser passage design method ... ver más
Revista: Aerospace

 
Sheng Zhang, Yuguang Bai, Youwei Zhang and Dan Zhao    
Hypersonic vehicles or engines usually employ complex thermal protecting shells. This sometimes brings multi-physics difficulties, e.g., thermal-aeroelastic problems like panel flutter etc. This paper aims to propose a novel optimization method versus th... ver más
Revista: Aerospace

 
Juan Francisco Mora-Sánchez, Josep Ribes, Josué González-Camejo, Aurora Seco and María Victoria Ruano    
This research lays a foundation for optimised membrane photobioreactor performance and introduces novel control parameters crucial for advancing microalgae cultivation techniques and promoting environmental sustainability. Particularly, this study presen... ver más
Revista: Water

 
Qianyang Li and Xingjun Zhang    
For time series forecasting, multivariate grey models are excellent at handling incomplete or vague information. The GM(1, N) model represents this group of models and has been widely used in various fields. However, constructing a meaningful GM(1, N) mo... ver más
Revista: Applied Sciences

 
Syed As-Sadeq Tahfim and Yan Chen    
Severe and fatal crashes involving large trucks result in significant social and economic losses for human society. Unfortunately, the notably low proportion of severe and fatal injury crashes involving large trucks creates an imbalance in crash data. Mo... ver más
Revista: Information