Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Aerospace  /  Vol: 10 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Design and Preliminary Performance Assessment of a PHM System for Electromechanical Flight Control Actuators

Antonio Carlo Bertolino    
Andrea De Martin    
Giovanni Jacazio and Massimo Sorli    

Resumen

The evolution toward ?more electric? aircraft has seen a decisive push in the last decade due to growing environmental concerns and the development of new market segments (flying taxis). Such a push has involved both the propulsion components and the aircraft systems, with the latter seeing a progressive trend in replacing traditional solutions based on hydraulic power with electrical or electromechanical devices. Flight Control Systems (FCSs) are one of the aircraft systems affected the most since the adoption of Electromechanical Actuators (EMAs) would provide several advantages over traditional electrohydraulic or mechanical solutions, but their application is still limited due to their sensitivity to certain single points of failure that can lead to mechanical jams. The development of an effective and reliable Prognostics and Health Management (PHM) system for EMAs could help in mitigating the risk of a sudden critical failure by properly recognizing and tracking the ongoing fault and anticipating its evolution, thus boosting the acceptance of EMAs as the primary flight-control actuators in commercial aircraft. The paper is focused on the results of the preliminary activities performed within the CleanSky 2/Astib research program, dedicated to the definition of the iron bird of a new regional-transport aircraft able to provide some prognostic capabilities and act as a technological demonstrator for new PHM strategies for EMAs employed in-flight control systems. The paper is organized as follows. At first, a proper introduction to the research program is provided, along with a brief description of the employed approach. Hence the simulation models adopted for the study are presented and used to build synthetic databases to inform the definition of the PHM algorithm. The prognostic framework is then presented, and a preliminary assessment of its expected performance is discussed.

Palabras claves

 Artículos similares

       
 
Andris Slavinskis, Mario F. Palos, Janis Dalbins, Pekka Janhunen, Martin Tajmar, Nickolay Ivchenko, Agnes Rohtsalu, Aldo Micciani, Nicola Orsini, Karl Mattias Moor, Sergei Kuzmin, Marcis Bleiders, Marcis Donerblics, Ikechukwu Ofodile, Johan Kütt, Tõnis Eenmäe, Viljo Allik, Jaan Viru, Pätris Halapuu, Katriin Kristmann, Janis Sate, Endija Briede, Marius Anger, Katarina Aas, Gustavs Plonis, Hans Teras, Kristo Allaje, Andris Vaivads, Lorenzo Niccolai, Marco Bassetto, Giovanni Mengali, Petri Toivanen, Iaroslav Iakubivskyi, Mihkel Pajusalu and Antti TammaddShow full author listremoveHide full author list    
The electric solar wind sail, or E-sail, is a propellantless interplanetary propulsion system concept. By deflecting solar wind particles off their original course, it can generate a propulsive effect with nothing more than an electric charge. The high-v... ver más
Revista: Aerospace

 
Won-June Jeong, Seol Nam, Jong-Chun Park and Hyeon Kyu Yoon    
This study aims to investigate the influence of wheel configurations on hydrodynamic resistance of an amphibious vessel through experiments and simulations. To evaluate the resistance performance associated with wheel attachments, three configurations we... ver más

 
Zikang Jin, Zonghan Yu, Fanshuo Meng, Wei Zhang, Jingzhi Cui, Xiaolong He, Yuedi Lei and Omer Musa    
The parametric design method is widely utilized in the preliminary design stage for hypersonic vehicles; it ensures the fast iteration of configuration, generation, and optimization. This study proposes a novel parametric method for a wide-range, wing-mo... ver más
Revista: Aerospace

 
Luisa Boni, Marco Bassetto and Alessandro A. Quarta    
Photonic solar sails are a class of advanced propellantless propulsion systems that use thin, large, lightweight membranes to convert the momentum of light from the Sun into thrust for space navigation. The conceptually simple nature of such a fascinatin... ver más
Revista: Aerospace

 
Saad Chahba, Guillaume Krebs, Cristina Morel, Rabia Sehab and Ahmad Akrad    
The electric urban air mobility sector has gained significant attraction in public debates, particularly with the proliferation of announcements demonstrating new aerial vehicles and the infrastructure that goes with them. In this context, the developmen... ver más
Revista: Aerospace