Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Numerical Study on the Corner Separation Control for a Compressor Cascade via Bionic Herringbone Riblets

Peng Zhang    
Rixin Cheng and Yonghong Li    

Resumen

Bionic herringbone riblets are applied to relieve the flow near the blade endwall in a linear compressor cascade under the incidence angle of -4° to 6° at a Reynolds number of 382,000. The herringbone riblets are placed at the endwall upstream of the blade, and the Reynolds-averaged Navier?Stokes simulations are performed to explore their effects on corner separation and the control mechanism. The results show that the herringbone riblets can effectively improve the corner separation over the stable operating range, and the control effect is affected by the riblet height and the yaw angle. The implementation of herringbone riblets with a height of only 0.08 boundary layer thickness and a yaw angle of 30 degrees can reduce the total pressure loss by up to 9.89% and increase the static pressure coefficient by 12.27%. Flow details indicate that small-scale vortices in the riblet channels can accumulate and form a high-intensity large-scale vortex close to the bottom of the boundary layer downstream. Compared with traditional vortex generators, the herringbone riblets induce a vortex closer to the wall due to their smaller size, which can reduce the damage of an induced vortex to the mainstream and enhance its control over the bottom of the boundary layer, thereby effectively reducing additional losses. The induced vortex enhances mixing and injects kinetic energy into the low-energy fluid, thus inhibiting the transverse migration of low-energy fluid in the endwall boundary layer, delaying the formation of the separating vortex, further suppressing the development of corner separation and improving the aerodynamic performance of the cascade.

 Artículos similares

       
 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más

 
Yufan He, Can Luo, Li Cheng, Yandong Gu and Bin Gu    
The shaft-type tubular pumping station has the remarkable characteristics of a large flow rate and high efficiency. It can realize the functions of irrigation, pumping, and drainage through pumping and generating conditions considering tides. Moreover, i... ver más

 
Jiaqi Hu, Yin Gu, Jinhuang Yan, Ying Sun and Xinyi Huang    
With the convenient and fast requirements for construction in bridge engineering, prefabricated assembly technology is widely applied in engineering construction. Typically, prefabricated bridge decks are connected through cast-in-place wet joints. Wet j... ver más
Revista: Applied Sciences

 
Liang Dai, Chaojun Jia, Lei Chen, Qiang Zhang and Wei Chen    
The intricate geological conditions of reservoir banks render them highly susceptible to destabilization and damage from fluctuations in water levels. The study area, the Cheyipin section of the Huangdeng Hydroelectric Station, is characterized by numero... ver más
Revista: Applied Sciences

 
Zhipeng Zang, Zhuo Fang, Kuan Qiao, Limeng Zhao and Tongming Zhou    
A three-dimensional numerical model was established based on ANSYS-AQWA (R19.0) software for the purpose of analyzing the hydrodynamic characteristics of a floating breakwater. This study examines three distinct floating breakwaters with different cross-... ver más