Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Critical Infrastructure Renewal: A Framework for Fuzzy Logic Based Risk Assessment and Microscopic Traffic Simulation Modelling

MD Jahedul Alam    
Muhammad Ahsanul Habib    
Kevin Quigley    

Resumen

This paper presents a comprehensive framework for risk assessment and micro simulation modelling to assess traffic impacts during re-decking of a major suspension bridge identified as Critical Infrastructure (CI) in Halifax, Canada. The bridge is being replaced while maintaining traffic during day time. As re-decking is relatively a rare and unknown construction event for a Cable Bridge, unexpected risk event and uncertainty would be associated with complex engineering manoeuvring during the re-decking of the bridge. Therefore, this study proposes a fuzzy logic approach to estimate the construction related bridge opening delay, and subsequently develops a micro simulation-based traffic network model to assess the traffic impacts on transport network. Weather data, traffic volume and signal data obtained from multiple data sources have been used during the risk assessment and micro simulation modelling. The results suggest that the likelihood of bridge opening delay could range from 18%-30% for an hour period to 40% for 3 hour period depending on the level of consequence on any day in December. The average potential delay is obtained as 22 minutes, 1.5 hours, and 2.6 hours for low consequence, medium consequence, and high consequence respectively. Based on the delay analysis, this study evaluates three alternative bridge opening delay scenarios. It is observed that the increment in number of operating vehicles becomes steady at 30% suggesting the network has reached its capacity. The results also reveals that any delay over 2 hours in bridge opening would add a slight change to the impacts on the network. This study will help policy-makers to develop risk mitigation plans and contingencies to ensure better management of traffic during 18 months long re-decking of this critical infrastructure.

 Artículos similares

       
 
Joana Carneiro, Dália Loureiro, Marta Cabral and Dídia Covas    
This paper presents and demonstrates a novel scenario-building methodology that integrates contextual and future time uncertainty into the performance assessment of water distribution networks (WDNs). A three-step approach is proposed: (i) System context... ver más
Revista: Water

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Fariha Imam, Petr Musilek and Marek Z. Reformat    
Due to aging infrastructure, technical issues, increased demand, and environmental developments, the reliability of power systems is of paramount importance. Utility companies aim to provide uninterrupted and efficient power supply to their customers. To... ver más
Revista: Information

 
Asteris Apostolidis, Stijn Donckers, Dave Peijnenburg and Konstantinos P. Stamoulis    
This study focuses on the feasibility of electric aircraft operations between the Caribbean islands of Aruba, Bonaire, and Curaçao. It explores the technical characteristics of two different future electric aircraft types (i.e., Alice and ES-19) and comp... ver más
Revista: Aerospace

 
Saikat Das, Mohammad Ashrafuzzaman, Frederick T. Sheldon and Sajjan Shiva    
The distributed denial of service (DDoS) attack is one of the most pernicious threats in cyberspace. Catastrophic failures over the past two decades have resulted in catastrophic and costly disruption of services across all sectors and critical infrastru... ver más
Revista: Algorithms