Resumen
An optimal power dispatch of a small-scale standalone microgrid for remote area power supply in Colombian territory is proposed in this paper. The power dispatch is generated by an energy management system based on a mixed-integer linear programming, which minimizes the cost of operating the microgrid while fulfilling the technical constraints of its elements. The energy management system solves an optimization problem using the algebraic representation of the generators and its constraints. Basic steady-state models of the generators are selected to solve the optimization problem. The small-scale microgrid is considered for a remote area power supply in Taroa, a small settlement in La Guajira, Colombia. The microgrid is composed of photovoltaic modules, a wind generator, a diesel generator, a battery bank, and residential loads. To validate the solution, the elements of the microgrids are parameterized with information from commercial equipment. Moreover, the power dispatch obtained with the proposed solution is compared with a power dispatch generated by a heuristic algorithm, which has been previously used to dispatch power in a small-scale standalone microgrid. Results show that the cost of operating the microgrid is minimized using the proposed optimization approach: a reduction of the operating cost equal to 25.5% of the cost imposed by the heuristic algorithm is obtained.