Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

PRC-Light YOLO: An Efficient Lightweight Model for Fabric Defect Detection

Baobao Liu    
Heying Wang    
Zifan Cao    
Yu Wang    
Lu Tao    
Jingjing Yang and Kaibing Zhang    

Resumen

Defect detection holds significant importance in improving the overall quality of fabric manufacturing. To improve the effectiveness and accuracy of fabric defect detection, we propose the PRC-Light YOLO model for fabric defect detection and establish a detection system. Firstly, we have improved YOLOv7 by integrating new convolution operators into the Extended-Efficient Layer Aggregation Network for optimized feature extraction, reducing computations while capturing spatial features effectively. Secondly, to enhance the performance of the feature fusion network, we use Receptive Field Block as the feature pyramid of YOLOv7 and introduce Content-Aware ReAssembly of FEatures as upsampling operators for PRC-Light YOLO. By generating real-time adaptive convolution kernels, this module extends the receptive field, thereby gathering vital information from contexts with richer content. To further optimize the efficiency of model training, we apply the HardSwish activation function. Additionally, the bounding box loss function adopts the Wise-IOU v3, which incorporates a dynamic non-monotonic focusing mechanism that mitigates adverse gradients from low-quality instances. Finally, in order to enhance the PRC-Light YOLO model?s generalization ability, we apply data augmentation techniques to the fabric dataset. In comparison to the YOLOv7 model, multiple experiments indicate that our proposed fabric defect detection model exhibits a decrease of 18.03% in model parameters and 20.53% in computational load. At the same time, it has a notable 7.6% improvement in mAP.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Peiran Peng, Ying Wang, Can Hao, Zhizhong Zhu, Tong Liu and Weihu Zhou    
Fabric defect detection is very important in the textile quality process. Current deep learning algorithms are not effective in detecting tiny and extreme aspect ratio fabric defects. In this paper, we proposed a strong detection method, Priori Anchor Co... ver más
Revista: Applied Sciences
Xi Yue, Qing Wang, Lei He, Yuxia Li and Dan Tang    
Fabric quality plays a crucial role in modern textile industry processes. How to detect fabric defects quickly and effectively has become the main research goal of researchers. The You Only Look Once (YOLO) series of networks have maintained a dominant p... ver más
Revista: Applied Sciences
Long Li, Qi Li, Zhiyuan Liu and Lin Xue    
The research results can quickly and accurately detect defects in the fabric production process.
Revista: Applied Sciences
Roberto De Fazio, Massimo De Vittorio and Paolo Visconti    
Breathing is essential for human life. Issues related to respiration can be an indicator of problems related to the cardiorespiratory system; thus, accurate breathing monitoring is fundamental for establishing the patient?s condition. This paper presents... ver más
Revista: Future Internet