Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Is the Spatial-Temporal Dependence Model Reliable for the Short-Term Freight Volume Forecast of Inland Ports? A Case Study of the Yangtze River, China

Lei Liu    
Yong Zhang    
Chen Chen    
Yue Hu    
Cong Liu and Jing Chen    

Resumen

The purpose of this study is to investigate whether spatial-temporal dependence models can improve the prediction performance of short-term freight volume forecasts in inland ports. To evaluate the effectiveness of spatial-temporal dependence forecasting, the basic time series forecasting models for use in our comparison were first built based on an autoregression integrated moving average model (ARIMA), a back-propagation neural network (BPNN), and support vector regression (SVR). Subsequently, combining a gradient boosting decision tree (GBDT) with SVR, an SVR-GBDT model for spatial-temporal dependence forecast was constructed. The SVR model was only used to build a spatial-temporal dependence forecasting model, which does not distinguish spatial and temporal information but instead takes them as data features. Taking inland ports in the Yangtze River as an example, the results indicated that the ports? weekly freight volumes had a higher autocorrelation with the previous 1?3 weeks, and the Pearson correlation values of the ports? weekly cargo volume were mainly located in the interval (0.2?0.5). In addition, the weekly freight volumes of the inland ports were higher depending on their past data, and the spatial-temporal dependence model improved the performance of the weekly freight volume forecasts for the inland river. This study may help to (1) reveal the significance of spatial correlation factors in ports? short-term freight volume predictions, (2) develop prediction models for inland ports, and (3) improve the planning and operation of port entities.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Zijie Ding, Zhuoshi He, Zhihui Huang, Junfang Wang and Hang Yin    
Accurate traffic flow prediction is highly important for relieving road congestion. Due to the intricate spatial?temporal dependence of traffic flows, especially the hidden dynamic correlations among road nodes, and the dynamic spatial?temporal character... ver más
Revista: Atmosphere
Qingbin Wei, Lianjun Zhang, Wenbiao Duan and Zhen Zhen    
Objective: This study investigated the relationships between PM2.5 and 5 criteria air pollutants (SO2, NO2, PM10, CO, and O3) in Heilongjiang, China, from 2015 to 2018 using global and geographically and temporally weighted regression models. Methods: Or... ver más
Christina M. Botai, Joel O. Botai, Jaco P. De Wit, Katlego P. Ncongwane and Abiodun M. Adeola    
Drought is a creeping phenomenon whose effects evolve with time, yet the start and end is often only clear in the hindsight. The present study assessed drought conditions using two categories of drought indicators computed from precipitation data sets me... ver más
Revista: Water