Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Hydrology  /  Vol: 10 Par: 2 (2023)  /  Artículo

Flood Risk Assessment and Mapping: A Case Study from Australia?s Hawkesbury-Nepean Catchment

Matthew Kelly    
Imogen Schwarz    
Mark Ziegelaar    
Andrew B. Watkins and Yuriy Kuleshov    


Floods are the most common and costliest natural disaster in Australia. Australian flood risk assessments (FRAs) are mostly conducted on relatively small scales using modelling outputs. The aim of this study was to develop a novel approach of index-based analysis using a multi-criteria decision-making (MCDM) method for FRA on a large spatial domain. The selected case study area was the Hawkesbury-Nepean Catchment (HNC) in New South Wales, which is historically one of the most flood-prone regions of Australia. The HNC?s high flood risk was made distinctly clear during recent significant flood events in 2021 and 2022. Using a MCDM method, an overall Flood Risk Index (FRI) for the HNC was calculated based on flood hazard, flood exposure, and flood vulnerability indices. Inputs for the indices were selected to ensure that they are scalable and replicable, allowing them to be applied elsewhere for future flood management plans. The results of this study demonstrate that the HNC displays high flood risk, especially on its urbanised floodplain. For the examined March 2021 flood event, the HNC was found to have over 73% (or over 15,900 km2) of its area at ?Severe? or ?Extreme? flood risk. Validating the developed FRI for correspondence to actual flooding observations during the March 2021 flood event using the Receiver Operating Characteristic (ROC) statistical test, a value of 0.803 was obtained (i.e., very good). The developed proof-of-concept methodology for flood risk assessment on a large spatial scale has the potential to be used as a framework for further index-based FRA approaches.

 Artículos similares

Kees Nederhoff, Sean C. Crosby, Nate R. Van Arendonk, Eric E. Grossman, Babak Tehranirad, Tim Leijnse, Wouter Klessens and Patrick L. Barnard    
The Puget Sound Coastal Storm Modeling System (PS-CoSMoS) is a tool designed to dynamically downscale future climate scenarios (i.e., projected changes in wind and pressure fields and temperature) to compute regional water levels, waves, and compound flo... ver más
Revista: Water

Ali Aldrees, Abdulrasheed Mohammed, Salisu Dan?azumi and Sani Isah Abba    
Flooding is a major environmental problem facing urban cities, causing varying degrees of damage to properties and disruption to socio-economic activities. Nigeria is the most populous African country and Kano metropolis is the second largest urban cente... ver más
Revista: Water

Linpei Zhai and Jae Eun Lee    
This study aimed to explore the differences in various aspects of community disaster resilience and how to enhance disaster resilience tailored to different community types. The evaluation results were validated using the flood event that occurred in Zhe... ver más
Revista: Water

Qing Li, Yu Li, Lingyun Zhao, Zhixiong Zhang, Yu Wang and Meihong Ma    
Accurately assessing the risk of flash floods is a fundamental prerequisite for defending against flash flood disasters. The existing methods for assessing flash flood risk are constrained by unclear key factors and challenges in elucidating disaster mec... ver más
Revista: Water

Jing Ran and Zorica Nedovic-Budic    
Accessible geospatial data are crucial for informed decision making and policy development in urban planning, environmental governance, and hazard mitigation. Spatial data infrastructures (SDIs) have been implemented to facilitate such data access. Howev... ver más