Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Artificial Immune Classifier Based on ELLipsoidal Regions (AICELL) ?

Aris Lanaridis    
Giorgos Siolas and Andreas Stafylopatis    

Resumen

Pattern classification is a central problem in machine learning, with a wide array of applications, and rule-based classifiers are one of the most prominent approaches. Among these classifiers, Incremental Rule Learning algorithms combine the advantages of classic Pittsburg and Michigan approaches, while, on the other hand, classifiers using fuzzy membership functions often result in systems with fewer rules and better generalization ability. To discover an optimal set of rules, learning classifier systems have always relied on bio-inspired models, mainly genetic algorithms. In this paper we propose a classification algorithm based on an efficient bio-inspired approach, Artificial Immune Networks. The proposed algorithm encodes the patterns as antigens, and evolves a set of antibodies, representing fuzzy classification rules of ellipsoidal surface, to cover the problem space. The innate immune mechanisms of affinity maturation and diversity preservation are modified and adapted to the classification context, resulting in a classifier that combines the advantages of both incremental rule learning and fuzzy classifier systems. The algorithm is compared to a number of state-of-the-art rule-based classifiers, as well as Support Vector Machines (SVM), producing very satisfying results, particularly in problems with large number of attributes and classes.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Alireza Rezvanian, S. Mehdi Vahidipour and Ali Mohammad Saghiri    
Artificial immune systems (AIS), as nature-inspired algorithms, have been developed to solve various types of problems, ranging from machine learning to optimization. This paper proposes a novel hybrid model of AIS that incorporates cellular automata (CA... ver más
Revista: Algorithms
Huseyn Huseynov, Tarek Saadawi and Kenichi Kourai    
The extreme bandwidth and performance of 5G mobile networks changes the way we develop and utilize digital services. Within a few years, 5G will not only touch technology and applications, but dramatically change the economy, our society and individual l... ver más
Malgorzata Muzalewska    
The main purpose of the article is to describe the methodology used for multi-criteria optimization of the geometric features of the orthopedic implant used for the reconstruction of the anterior cruciate ligament located in the knee joint. The methodolo... ver más
Revista: Applied Sciences
Hua Wang, Wenwen Li, Wei Huang and Ke Nie    
The delimitation of permanent basic farmland is essentially a multi-objective optimization problem. The traditional demarcation methods cannot simultaneously take into account the requirements of cultivated land quality and the spatial layout of permanen... ver más