ARTÍCULO
TITULO

Hydrodynamic Sensitivity of Moored and Articulated Multibody Offshore Structures in Waves

Changqing Jiang    
Ould el Moctar and Thomas E. Schellin    

Resumen

Within the framework of Space@Sea project, an articulated modular floating structure was developed to serve as building blocks for artificial islands. The modularity was one of the key elements, intended to provide the desired flexibility of additional deck space at sea. Consequently, the layout of a modular floating concept may change, depending on its functionality and environmental condition. Employing a potential-flow-based numerical model (i.e., weakly nonlinear Green function solver AQWA), this paper studied the hydrodynamic sensitivity of such multibody structures to the number of modules, to the arrangement of these modules, and to the incident wave angle. Results showed that for most wave frequencies, their hydrodynamic characteristics were similar although the floating platforms consisted of a different number of modules. Only translational horizontal motions, i.e., surge and sway, were sensitive to the incident wave angle. The most critical phenomenon occurred at head seas, where waves traveled perpendicularly to the rotation axes of hinged joints, and the hinge forces were largest. Hydrodynamic characteristics of modules attached behind the forth module hardly changed. The highest mooring line tensions arose at low wave frequencies, and they were caused by second-order mean drift forces. First-order forces acting on the mooring lines were relatively small. Apart from the motion responses and mooring tensions, forces acting on the hinge joints governed the system?s design. The associated results contribute to design of optimal configurations of moored and articulated multibody floating islands.

 Artículos similares

       
 
Cuiping Kuang, Jiadong Fan, Xuejian Han, Hongyi Li, Rufu Qin and Qingping Zou    
With the recent development from grey infrastructures to green infrastructures, artificial reefs become more popular in coastal protection projects. To investigate the responses of beach profile evolution to the presence of an artificial reef, a non-hydr... ver más
Revista: Water

 
Chiemela Victor Amaechi, Facheng Wang and Jianqiao Ye    
There is an increase in the utilization of the floating offshore structure (FOS) called Catenary Anchor Leg Mooring (CALM) buoys and the attached marine hoses due to the increasing demand for oil and gas products. These hoses are flexible and easier to u... ver más

 
José Fortes Lopes    
Turbulence modelling is an important issue when dealing with hydrodynamic and transport models for better simulation of the transport of dissolved or suspended substances in a body-water. It controls processes involving physical balances (salt and water ... ver más

 
Yuchun Lin, Ayumi Fujisaki-Manome and Eric J. Anderson    
Landfast ice plays an important role in the nearshore hydrodynamics of large lakes, such as the dampening of surface waves and currents. In this study, previously developed landfast ice basal stress parameterizations were added to an unstructured grid hy... ver más

 
Xiaojiang Guo, Yu Zhang, Jiatao Yan, Yiming Zhou, Shu Yan, Wei Shi and Xin Li    
Wind energy in the deep-sea area is more abundant and the capacity of wind turbines can be made larger. Therefore, the research on deep-sea floating offshore wind turbines will be the primary strategy for wind energy exploitation in the future. The spar-... ver más