Resumen
Changes in extreme precipitation events may require revisions of civil engineering standards to prevent water infrastructures from performing below the designated guidelines. Climate change may invalidate the intensity-duration-frequency (IDF) computation that is based on the assumption of data stationarity. Efforts in evaluating non-stationarity in the annual maxima series are inadequate, mostly due to the lack of long data records and convenient methods for detecting trends in the higher moments. In this study, using downscaled high resolution climate simulations of the historical and future periods under different carbon emission scenarios, we tested two solutions to obtain reliable IDFs under non-stationarity: (1) identify quasi-stationary time windows from the time series of interest to compute the IDF curves using data for the corresponding time windows; (2) introduce a parameter representing the trend in the means of the extreme value distributions. Focusing on a mountainous site, the Walker Watershed, the spatial heterogeneity and variability of IDFs or extremes are evaluated, particularly in terms of the terrain and elevation impacts. We compared observations-based IDFs that use the stationarity assumption with the two approaches that consider non-stationarity. The IDFs directly estimated based on the traditional stationarity assumption may underestimate the 100-year 24-h events by 10% to 60% towards the end of the century at most grids, resulting in significant under-designing of the engineering infrastructure at the study site. Strong spatial heterogeneity and variability in the IDF estimates suggest a preference for using high resolution simulation data for the reliable estimation of exceedance probability over data from sparsely distributed weather stations. Discrepancies among the three IDFs analyses due to non-stationarity are comparable to the spatial variability of the IDFs, underscoring a need to use an ensemble of non-stationary approaches to achieve unbiased and comprehensive IDF estimates.