Inicio  /  Computation  /  Vol: 9 Par: 3 (2021)  /  Artículo
ARTÍCULO
TITULO

Experimental Analysis of Hyperparameters for Deep Learning-Based Churn Prediction in the Banking Sector

Edvaldo Domingos    
Blessing Ojeme and Olawande Daramola    

Resumen

Until recently, traditional machine learning techniques (TMLTs) such as multilayer perceptrons (MLPs) and support vector machines (SVMs) have been used successfully for churn prediction, but with significant efforts expended on the configuration of the training parameters. The selection of the right training parameters for supervised learning is almost always experimentally determined in an ad hoc manner. Deep neural networks (DNNs) have shown significant predictive strength over TMLTs when used for churn predictions. However, the more complex architecture of DNNs and their capacity to process huge amounts of non-linear input data demand more time and effort to configure the training hyperparameters for DNNs during churn modeling. This makes the process more challenging for inexperienced machine learning practitioners and researchers. So far, limited research has been done to establish the effects of different hyperparameters on the performance of DNNs during churn prediction. There is a lack of empirically derived heuristic knowledge to guide the selection of hyperparameters when DNNs are used for churn modeling. This paper presents an experimental analysis of the effects of different hyperparameters when DNNs are used for churn prediction in the banking sector. The results from three experiments revealed that the deep neural network (DNN) model performed better than the MLP when a rectifier function was used for activation in the hidden layers and a sigmoid function was used in the output layer. The performance of the DNN was better when the batch size was smaller than the size of the test set data, while the RemsProp training algorithm had better accuracy when compared with the stochastic gradient descent (SGD), Adam, AdaGrad, Adadelta, and AdaMax algorithms. The study provides heuristic knowledge that could guide researchers and practitioners in machine learning-based churn prediction from the tabular data for customer relationship management in the banking sector when DNNs are used.

 Artículos similares

       
 
Yichi Chen, Wangqiang Niu, Yanhua Yang and Yassine Amirat    
The eddy current loss caused by the conductivity of seawater results in a relatively low transfer efficiency of underwater wireless power transfer (WPT). And the transfer distance of the current WPT system is relatively short. Considering that most of th... ver más

 
Chunyun Shen, Jiahao Zhang, Chenglin Ding and Shiming Wang    
By combining computational fluid dynamics (CFD) and surrogate model method (SMM), the relationship between turbine performance and airfoil shape and flow characteristics at low flow rate is revealed. In this paper, the flow velocity tidal energy airfoil ... ver más

 
Zhen Yao, Jie Chen, Changbo Jiang, Hai Liang, Zhiyuan Wu, Bin Deng, Yuannan Long and Chen Bian    
This study utilized 50 laboratory experiments to document the evolution of coral beaches under varying regular wave conditions, including five distinct wave periods and ten wave heights. Both the type of equilibrium beach and the shape of sand bars were ... ver más

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Jozef Gocál, Josef Vican, Jaroslav Odrobinák, Richard Hlinka, Franti?ek Bahleda and Agnieszka Wdowiak-Postulak    
In addition to traditional building materials, such as steel and concrete, wood has been gaining increasing prominence in recent years. In the past, the use of wood was limited due to its susceptibility to damage by fungi, insects, and temperature. These... ver más
Revista: Applied Sciences