Inicio  /  Buildings  /  Vol: 13 Par: 4 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental Research on the Mechanical Properties of MURSP-Type Steel-Concrete Composite Beams in Negative-Moment Region

Jianqing Bu    
Wenlong Cao    
Xueyan Wang and Lianpeng Zhang    

Resumen

To verify the effectiveness of uplift-restricted and slip-permitted (URSP) connectors in alleviating crack formation in the negative-moment region of steel-concrete composite beams (SCCBs) and improve the engineering adaptability of URSP connectors, this paper proposes a modified uplift-restricted and slip-permitted (MURSP) connector. Static load tests and theoretical analysis were conducted on two overhanging beams with MURSP connectors and ordinary studs to analyze the influence of different stud forms on the deflection, crack, and slip of SCCBs in the negative-moment region. Finally, a nonlinear finite element modeling method for MURSP-type steel-concrete composite beams was developed, and a finite element model was established. The results showed that the use of MURSP connectors could effectively alleviate the concrete cracking problem in the negative-moment zone of SCCBs. Compared with the common stud SCCB, the crack load of the MURSP-type SCCB was higher, the maximum crack width was lower, and the crack distribution was more uniform; however, the overall flexural stiffness of the overhanging beam with MURSP connectors was reduced by 3.08%. The interface slip of the overhanging beam with the MURSP connectors increased suddenly in the initial stage of loading, whereas the increase was more gradual in the later stage. The SCCB model established in this study was in good agreement with the results of experimental beams. The finite element analysis results showed that the ordinary stud and MURSP connector exhibited different stress and deformation states in the negative-moment region of SCCBs, and the deformation states changed from bending type to shear type.

 Artículos similares

       
 
Ryan Good, David Nguyen, Hossein Bonakdari, Andrew Binns and Bahram Gharabaghi    
Predicting morphological adjustments in alluvial meandering streams remains a challenging task due to the complex nature of the governing inter-related dynamic flow and sediment transport processes. This difficulty is increased in streams with irregular ... ver más
Revista: Water

 
Naseer Muhammad Khan, Liqiang Ma, Muhammad Zaka Emad, Tariq Feroze, Qiangqiang Gao, Saad S. Alarifi, Li Sun, Sajjad Hussain and Hui Wang    
The brittleness index is one of the most integral parameters used in assessing rock bursts and catastrophic rock failures resulting from deep underground mining activities. Accurately predicting this parameter is crucial for effectively monitoring rock b... ver más
Revista: Water

 
Piaoyi Jiao and Weiwei Bu    
In an increasingly volatile environment, organizational learning plays a crucial role in helping organizations turn crises into opportunities and enhance organizational resilience. However, the existing research remains unclear on how organizational lear... ver más
Revista: Buildings

 
Ai-Sheng Wang, Zhang-Cai Yin and Shen Ying    
The possibility of moving objects accessing different types of points of interest (POIs) at specific times is not always the same, so quantitative time geography research needs to consider the actual POI semantic information, including POI attributes and... ver más

 
Jian Yang, Ming Sun, Guohuang Yao, Haizhu Guo and Rumian Zhong    
This study explores an advanced prefabricated composite structure, namely ECC/RC composite shear walls with enhanced seismic performance. This performance enhancement is attributed to the strategic use of engineered cementitious composites (ECC) known fo... ver más
Revista: Buildings