Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

STO2Vec: A Multiscale Spatio-Temporal Object Representation Method for Association Analysis

Nanyu Chen    
Anran Yang    
Luo Chen    
Wei Xiong and Ning Jing    

Resumen

Spatio-temporal association analysis has attracted attention in various fields, such as urban computing and crime analysis. The proliferation of positioning technology and location-based services has facilitated the expansion of association analysis across spatio-temporal scales. However, existing methods inadequately consider the scale differences among spatio-temporal objects during analysis, leading to suboptimal precision in association analysis results. To remedy this issue, we propose a multiscale spatio-temporal object representation method, STO2Vec, for association analysis. This method comprises of two parts: graph construction and embedding. For graph construction, we introduce an adaptive hierarchical discretization method to distinguish the varying scales of local features. Then, we merge the embedding method for spatio-temporal objects with that for discrete units, establishing a heterogeneous graph. For embedding, to enhance embedding quality for homogeneous and heterogeneous data, we use biased sampling and unsupervised models to capture the association strengths between spatio-temporal objects. Empirical results using real-world open-source datasets show that STO2Vec outperforms other models, improving accuracy by 16.25% on average across diverse applications. Further case studies indicate STO2Vec effectively detects association relationships between spatio-temporal objects in a range of scenarios and is applicable to tasks such as moving object behavior pattern mining and trajectory semantic annotation.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Ruien Tang, Guolin Hou and Rui Du    
Catering and urban elements have a strong spatial association. The spatial clustering and dispersal patterns of catering can effectively influence cities? economic and socio-spatial reconfiguration. This research first introduced the concept of the ARTR ... ver más
Bolelang H. Sibolla, Serena Coetzee and Terence L. Van Zyl    
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from th... ver más
Manik Mayur, Mathias Gerard, Pascal Schott and Wolfgang G. Bessler    
One of the bottlenecks hindering the usage of polymer electrolyte membrane fuel cell technology in automotive applications is the highly load-sensitive degradation of the cell components. The cell failure cases reported in the literature show localized c... ver más
Revista: Energies