Inicio  /  Applied Sciences  /  Vol: 12 Par: 9 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Reinforcement Learning-Based Adaptive Controller for Trajectory Tracking and Altitude Control of an Aerial Robot

Ali Barzegar and Deok-Jin Lee    

Resumen

This research study presents a new adaptive attitude and altitude controller for an aerial robot. The proposed controlling approach employs a reinforcement learning-based algorithm to actively estimate the controller parameters of the aerial robot. In dealing with highly nonlinear systems and parameter uncertainty, the proposed RL-based adaptive control algorithm has advantages over some types of standard control approaches. When compared to the conventional proportional integral derivative (PID) controllers, the results of the numerical simulation demonstrate the effectiveness of this intelligent control strategy, which can improve the control performance of the whole system, resulting in accurate trajectory tracking and altitude control of the vehicle.

 Artículos similares

       
 
Paul Lee, Gerasimos Theotokatos and Evangelos Boulougouris    
Autonomous ships are expected to extensively rely on perception sensors for situation awareness and safety during challenging operations, such as reactive collision avoidance. However, sensor noise is inevitable and its impact on end-to-end decision-maki... ver más

 
Bowen Xing, Xiao Wang and Zhenchong Liu    
The path planning strategy of deep-sea mining vehicles is an important factor affecting the efficiency of deep-sea mining missions. However, the current traditional path planning algorithms suffer from hose entanglement problems and small coverage in the... ver más

 
Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie and Tingting Zhao    
With the development of electronic game technology, the content of electronic games presents a larger number of units, richer unit attributes, more complex game mechanisms, and more diverse team strategies. Multi-agent deep reinforcement learning shines ... ver más
Revista: Algorithms

 
Wongwan Jung and Daejun Chang    

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures