ARTÍCULO
TITULO

Large Eddy Simulation of Flow over Wavy Cylinders with Different Twisted Angles at a Subcritical Reynolds Number

Chunyu Guo    
Hang Guo    
Jian Hu    
Kewei Song    
Weipeng Zhang and Wei Wang    

Resumen

The deformation of the cylinder has been proved to greatly reduce the fluctuation of lift and the vortex-induced vibration. In this article, a new form of deformation mode for the smooth cylinder is proposed in order to reduce the vortex-induced vibrations, which can be applied to marine risers and submarine pipelines to ensure the working performance and safety of offshore platforms. Large eddy simulation (LES) is adopted to simulate the turbulent flow over wavy cylinders with three different twisted angles at a subcritical Reynolds number Re = 28,712. Comparing with the results of smooth cylinder, the maximum drag and lift reduction of wavy cylinder A3 with a = 40° can reach 17% and 84%, respectively, and the corresponding vortex formation length increases significantly, while the turbulence intensity decreases relatively. Meanwhile, the circumferential minimum pressure coefficient is greater than that of the smooth cylinder, which also provides a greater drag reduction for the cylinder. The surface separation line, turbulent kinetic energy distribution, and wake vortex structure indicate that the elongation of separated shear layer and wake shedding position is larger than that of the smooth cylinder, and the vorticity value in the near wake region decreases. A periodic vortex structure is generated along the spanwise direction, and a weaker and more stable Karman vortex street is reformed at a further downstream position, which ultimately leads to the reduction of drag and fluctuating lift of the wavy cylinder.

 Artículos similares

       
 
Omkar Walvekar and Satyanarayanan Chakravarthy    
A conceptual framework is presented to determine the improvement in the aerodynamic performance of a canard aircraft fitted with distributed propellers along its main wing. A preliminary study is described with four airframe?propeller configurations pred... ver más
Revista: Aerospace

 
Lakshmi Narayana Phaneendra Peri, Antonella Ingenito and Paolo Teofilatto    
The goal of this paper is to investigate the aerodynamic and aerothermodynamic behavior of the Schiaparelli capsule after the deployment of a supersonic disk-gap-band (DGB) parachute during its re-entry phase into the Martian atmosphere. The novelty of t... ver más
Revista: Aerospace

 
Baoling Cui and Mingyu Shi    
Centrifugal pumps are essential fluid transfer devices in marine engineering. As the two most critical components of a centrifugal pump, the dynamic?static interference between the volute and the impeller makes the flow near the cutwater highly unstable,... ver más

 
Daniil Sergeev, Irina V?yushkina, Vladimir Eremeev, Andrei Stulenkov and Kirill Pyalov    
This paper presents the results of a study of self-sustained processes excited in a Helmholtz resonator after a flow over its orifice. A comparative analysis of various approaches to the numerical modeling of this problem was carried out, taking into acc... ver más
Revista: Acoustics

 
Arvid Åkerblom, Martin Passad, Alessandro Ercole, Niklas Zettervall, Elna J. K. Nilsson and Christer Fureby    
With growing interest in sustainable civil supersonic and hypersonic aviation, there is a need to model the combustion of alternative, sustainable jet fuels. This work presents numerical simulations of several related phenomena, including laminar flames,... ver más
Revista: Aerospace