Inicio  /  Applied Sciences  /  Vol: 13 Par: 14 (2023)  /  Artículo
ARTÍCULO
TITULO

Artificial Neural Network for Indoor Localization Based on Progressive Subdivided Quadrant Method

Kyeong Ryong Kim    
Aaron Lim and Jae Hyung Cho    

Resumen

The exterior location of a user can be accurately determined using a global positioning system (GPS). However, accurately locating objects indoors poses challenges due to signal penetration limitations within buildings. In this study, an MLP with stochastic gradient descent (SGD) among artificial neural networks (ANNs) and signal strength indicator (RSSI) data received from a Zigbee sensor are used to estimate the indoor location of an object. Four fixed nodes (FNs) were placed at the corners of an unobstructed area measuring 3 m in both length and width. Within this designated space, mobile nodes (MNs) captured position data and received RSSI values from the nodes to establish a comprehensive database. To enhance the precision of our results, we used a data augmentation approach which effectively expanded the pool of selected cells. We also divided the area into sectors using an ANN to increase the estimation accuracy, focusing on selecting sectors that had measurements. To enhance both accuracy and computational speed in selecting coordinates, we used B-spline surface equations. This method, which is similar to using a lookup table, brought noticeable benefits: for indoor locations, the error margin decreased below the threshold of sensor hardware tolerance as the number of segmentation steps increased. By comparing our proposed deep learning methodology with the traditional fingerprinting technique that utilizes a progressive segmentation algorithm, we verified the accuracy and cost-effectiveness of our method. It is expected that this research will facilitate the development of practical indoor location-based services that can estimate accurate indoor locations with minimal data.

 Artículos similares

       
 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
Tahsin Koroglu and Elanur Ekici    
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences