Inicio  /  Water  /  Vol: 15 Par: 20 (2023)  /  Artículo
ARTÍCULO
TITULO

RLNformer: A Rainfall Levels Nowcasting Model Based on Conv1D_Transformer for the Northern Xinjiang Area of China

Yulong Liu    
Shuxian Liu and Juepu Chen    

Resumen

Accurate precipitation forecasting is of great significance to social life and economic activities. Due to the influence of various factors such as topography, climate, and altitude, the precipitation in semi-arid and arid areas shows the characteristics of large fluctuation, short duration, and low probability of occurrence. Therefore, it is highly challenging to accurately predict precipitation in the northern Xinjiang area of China, which is located in the semi-arid and arid climate region. In this study, six meteorological stations in the northern Xinjiang area were selected as the research area. Due to the high volatility of rainfall in this area, the rainfall was divided into four levels, namely, ?no rain?, ?light rain?, ?moderate rain?, and ?heavy rain and above?, for rainfall level prediction. In order to improve the prediction performance, this study proposed a rainfall levels nowcasting model based on Conv1D_Transformer (RLNformer). Firstly, the maximum information coefficient (MIC) method was used for feature selection and sliding the data, that is, the data of the first 24 h were used to predict the rainfall levels in the next 3 h. Then, the Conv1D layer was used to replace the word-embedding layer of the transformer, enabling it to extract the relationships between features of time series data and allowing multi-head attention to better capture contextual information in the input sequence. Additionally, a normalization layer was placed before the multi-head attention layer to ensure that the input data had an appropriate scale and normalization, thereby reducing the sensitivity of the model to the distribution of input data and helping to improve model performance. To verify the effectiveness and generalization of the proposed model, the same experiments were conducted on the Indian public dataset, and seven models were selected as benchmark models. Compared with the benchmark models, RLNformer achieved the highest accuracy on both datasets, which were 96.41% and 88.95%, respectively. It also had higher accuracy in the prediction of each category, especially the minority category, which has certain reference significance and practical value.

 Artículos similares

       
 
Zekâi Sen    
In the open literature, there are numerous studies on the normal and extreme (flood and drought) behavior of wet and dry periods based on the understanding of the standard precipitation index (SPI), which provides a series of categorizations by consideri... ver más
Revista: Water

 
Ulrich A. Ngamalieu-Nengoue, Pedro L. Iglesias-Rey, F. Javier Martínez-Solano and Daniel Mora-Meliá    
Extreme rainfall events cause immense damage in cities where drainage networks are nonexistent or deficient and thus unable to transport rainwater. Infrastructure adaptations can reduce flooding and help the population avoid the associated negative conse... ver más
Revista: Water

 
Moumouni Djibo, Wend Yam Serge Boris Ouedraogo, Ali Doumounia, Serge Roland Sanou, Moumouni Sawadogo, Idrissa Guira, Nicolas Koné, Christian Chwala, Harald Kunstmann and François Zougmoré    

 
Rutineia Tassi, Enio Júnior Seidel, David da Motta-Marques, Adolfo Villanueva and Latif Kalin    
This study explored the role of the hydrological regime as a trigger factor for wildlife roadkill along a 22 km road crossing the Taim Wetland, a Ramsar site of international importance in South Brazil. The north?south crossing of BR-471, a federal highw... ver más
Revista: Water

 
José P. Vega-Camarena, Luis Brito-Castillo, Luis F. Pineda-Martínez and Luis M. Farfán    
In the warm season, El Niño/Southern Oscillation (ENSO) causes periods with more rain in Northern Mexico during its positive phase, while less rainfall is recorded in the southern regions during the negative phase. This research study evaluates the varia... ver más