ARTÍCULO
TITULO

Comparative Study on Numerical Calculation of Modal Characteristics of Pump-Turbine Shaft System

Xuyang Liu    
Jiayang Pang    
Lei Li    
Weiqiang Zhao    
Yupeng Wang    
Dandan Yan    
Lingjiu Zhou and Zhengwei Wang    

Resumen

Because a pump-turbine mainly undertakes the role of energy conversion and pumped storage in the field of hydropower engineering, the complex transition process and frequent conversion between different working conditions lead to the increase in the stress and strain of core components such as the unit shaft system, and even cause resonance phenomena. Based on ANSYS finite element numerical calculation software, this paper adopts the acoustic fluid?structure coupling method to study the influence of the shaft of the pump-turbine on the dynamic characteristics of the runner. At the same time, the paper analyses the influence of different contact modes between the runner and the shaft on the modal characteristics of the shaft system. The numerical simulation results have shown that the runner is affected by the added mass of the water. The natural frequency reduction rate of each order of wet modal is ranged from 19% to 64%. The main shaft has a greater influence on the simplification of the shaft system calculation method. The type of contact surface between the main shaft and the runner has a smaller influence on the modal characteristics and the natural frequency of the shaft system. The research in this paper contributes an evaluation of the dynamic characteristics of the runner of a hydraulic turbine unit, which is of great significance for the optimization of the analysis algorithm of the runner structure for large pumped storage units.

 Artículos similares

       
 
Camino Eck, Xiaoyu Kröner and Dorte Janussen    
This study investigates taxonomic characteristics of carnivorous sponges from the Southern Ocean. The specimens were collected in 2010 from deep-sea hydrothermal vents of the East Scotia Ridge during the RRS James Cook Cruise JC42. All the investigated s... ver más

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Shizhen Li, Qinfeng Wu, Yufeng Liu, Longfei Qiao, Zimeng Guo and Fei Yan    
To mitigate the interference of waves on an offshore operation ship, heave compensation systems find widespread application. The performance of heave compensation systems significantly influences the efficiency and safety of maritime operations. This stu... ver más

 
Yifan Wang, Jinglei Xu, Qihao Qin, Ruiqing Guan and Le Cai    
In this study, we propose a novel dynamic mode decomposition (DMD) energy sorting criterion that works in conjunction with the conventional DMD amplitude-frequency sorting criterion on the high-dimensional schlieren dataset of the unsteady flow of a spik... ver más
Revista: Aerospace

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace