Inicio  /  Buildings  /  Vol: 11 Par: 2 (2021)  /  Artículo
ARTÍCULO
TITULO

Mechanical Behavior and Frost-Resistance of Alkali-Activated Cement Concrete with Blended Binder at Ambient Curing Condition

Biruk Hailu Tekle    
Klaus Holschemacher    
Philipp Löber and Björn Heiden    

Resumen

Concrete is the most commonly used construction material because of its various advantages, such as versatility, familiarity, strength, and durability, and it will continue to be in demand far into the future. However, with today?s sensitivity to environmental protection, this material faces unprecedented challenges because of its high greenhouse gas emissions, mainly during cement production. This paper investigates one of the promising cement replacement materials, alkali-activated cement (AAC) concrete. Being produced mainly from byproduct materials and having a comparable structural performance to conventional concrete, AAC concrete can transform the construction industry. Mechanical properties such as compressive and flexural strength and the relationship between them are studied. Different source materials such as fly ash (FA), ground granulated blast furnace slag (GGBS), silica fume (SF), and Metakaolin (MK) are used. The effect of the source materials and the activator solutions on the concrete performance is studied. Furthermore, the freeze-thaw resistance of the concrete is studied. The study results showed that the behavior of AAC depends highly on the source material combinations and type used. The effect of the alkaline solution is also dependent on the source material used. Mixes with higher GGBS content showed the highest strength, while mixes with MK showed the highest flexural strength. The freeze-thaw test results showed that proper design of AAC concrete with lower water content is critical to achieving a good resistance.

 Artículos similares

       
 
Kai Li, Quan Liu, Yuan Tian, Cong Du and Zhixiang Xu    
Asphalt mixtures exhibit complex mechanical behaviors due to their multiphase internal structures. To provide better characterizations of asphalt pavements under various forms of potential distress, a two-dimensional (2D) finite element simulation based ... ver más
Revista: Buildings

 
Jianshe Xu, Yazhi Zhu, Jin Wu, Jin Lu, Qian Zhang and Wei Wang    
Although there are currently many types of lattice shell joints with different characteristics, assessing the flexural capacity of lattice shell joints is always a great challenge. In this paper, a fan-shaped assembled joint and a welded joint for compar... ver más
Revista: Buildings

 
Hao Chai, Xi?an Li, Biao Qin, Weiping Wang and Mani Axel    
The volumetric change in unsaturated loess during loading causes serious damage to the foundation and structure, accompanied by changes in hydraulic conditions. Therefore, quantifying the change in the load effect of loess under hydraulic coupling is of ... ver más
Revista: Water

 
Bofu Zheng, Dan Wang, Yuxin Chen, Yihui Jiang, Fangqing Hu, Liliang Xu, Jihong Zhang and Jinqi Zhu    
Background: Vegetation roots are considered to play an effective role in controlling soil erosion by benefiting soil hydrology and mechanical properties. However, the correlation between soil hydrology and the mechanical features associated with the vari... ver más
Revista: Water

 
Chang Li, Shuren Hao, Shengjie Zhang, Yongqing Jiang and Zhidong Yi    
In order to understand the long-term process of CO2 storage and demonstrate its safety, multi-field coupled numerical simulation is considered a crucial technology in the field of geological CO2 storage. This study establishes a site-specific homogeneous... ver más
Revista: Water