ARTÍCULO
TITULO

Fluid Structure Interaction Using Modal Superposition and Lagrangian CFD

Manigandan Paneer    
Josip Ba?ic    
Damir Sedlar    
?eljan Lozina    
Nastia Degiuli and Chong Peng    

Resumen

This study investigates the impact of fluid loads on the elastic deformation and dynamic response of linear structures. A weakly coupled modal solver is presented, which involves the solution of a dynamic equation of motion with external loads. The mode superposition method is used to find the dynamic response, utilizing predetermined mode shapes and natural frequencies associated with the structure. These essential parameters are pre-calculated and provided as input for the simulation. Integration of the weakly coupled modal solver is accomplished with the Lagrangian Differencing Dynamics (LDD) method. This method can directly use surface mesh as boundary conditions, so it is much more convenient than other meshless CFD methods. It employs Lagrangian finite differences, utilizing a strong formulation of the Navier?Stokes equations to model an incompressible free-surface flow. The elastic deformation of the structure, induced by fluid forces obtained from the flow solver, is computed within the modal coupling algorithm through direct numerical integration. Subsequently, this deformation is introduced into the flow solver to account for changes in geometry, resulting in updated flow pressure and velocity fields. The flow particles and vertices of the structure are advected in Lagrangian coordinates, resulting in Lagrangian?Lagrangian coupling in spaces with weak or explicit coupling in time. The two-way coupling between fluid and structure is successfully validated through various FSI benchmark cases. The efficiency of the LDD method is highlighted as it operates directly on surface meshes, streamlining the simulation setup. Direct coupling of structural deformation eliminates the conventional step of mapping fluid results onto the structural mesh and vice versa.

Palabras claves

 Artículos similares

       
 
Yousef Alharbi    
Valvular heart conditions significantly contribute to the occurrence of cardiovascular disease, affecting around 2?3 million people in the United States. The anatomical characteristics of cardiac muscles and valves can significantly influence blood flow ... ver más
Revista: Applied Sciences

 
Zhenyang He, Wenbin Wu, Junrong Wang, Lan Ding, Qiangbo Chang and Yahao Huang    
When the underwater submersible encounters an internal solitary wave (ISW), its loadings and motions are significantly disturbed. To investigate the interaction mechanism between the suspended submersible and the ISW, a three-dimensional ISW?submersible-... ver más

 
Dong-Ju Kim, Young-Suk You and Min-Young Sun    
Offshore wind turbines (OWTs) are exposed to cyclic loads resulting from wind, waves, and rotor rotation. These loads can induce resonance, thereby significantly increasing the amplitude of the structure and accelerating the accumulation of fatigue damag... ver más

 
Kaipeng Zhu, Kai Li, Yadong Ji, Xiaolong Li, Xuan Liu, Kaide Liu and Xuandong Chen    
The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, a... ver más
Revista: Water

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences