ARTÍCULO
TITULO

Research on Visual Perception for Coordinated Air?Sea through a Cooperative USV-UAV System

Chen Cheng    
Dong Liu    
Jin-Hui Du and Yong-Zheng Li    

Resumen

The identification and classification of obstacles in navigable and non-navigable regions, as well as the measurement of distances, are crucial topics of investigation in the field of autonomous navigation for unmanned surface vehicles (USVs). Currently, USVs mostly rely on LiDAR and ultrasound technology for the purpose of detecting impediments that exist on water surfaces. However, it is worth noting that these approaches lack the capability to accurately discern the precise nature or classification of those obstacles. Nevertheless, the limited optical range of unmanned vessels hinders their ability to comprehensively perceive the entirety of the surrounding information. A cooperative USV-UAV system is proposed to ensure the visual perception ability of USVs. The multi-object recognition, semantic segmentation, and obstacle ranging through USV and unmanned aerial vehicle (UAV) perspectives are selected to validate the performance of a cooperative USV-UAV system. The you only look once-X (YOLOX) model, the proportional?integral?derivative-NET (PIDNet) model, and distance measurements based on a monocular camera are utilized to realize these problems. The results indicate that by integrating the viewpoints of USVs and UAVs, a collaborative USV-UAV system, employing the aforementioned methods, can successfully detect and classify different objects surrounding the USV. Additionally, it can differentiate between navigable and non-navigable regions for unmanned vessels through visual recognition, while accurately determining the distance between the USV and obstacles.

 Artículos similares

       
 
Alvin Lee, Suet-Peng Yong, Witold Pedrycz and Junzo Watada    
Drones play a pivotal role in various industries of Industry 4.0. For achieving the application of drones in a dynamic environment, finding a clear path for their autonomous flight requires more research. This paper addresses the problem of finding a nav... ver más
Revista: Algorithms

 
Yan Wang, Nan Guan, Jie Li and Xiaoli Wang    
Fourier ptychographic microscopy (FPM) is a computational imaging technology that has endless vitality and application potential in digital pathology. Colored pathological image analysis is the foundation of clinical diagnosis, basic research, and most b... ver más
Revista: Applied Sciences

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Miguel-Ángel Fas-Millán, Andreas Pick, Daniel González del Río, Alejandro Paniagua Tineo and Rubén García García    
Within the framework of the European Union?s Horizon 2020 research and innovation program, one of the main goals of the Labyrinth project was to develop and test the Conflict Management services of a U-space-based Unmanned Traffic Management (UTM) system... ver más
Revista: Aerospace

 
Qiuyue Li, Hao Sheng, Mingxue Sheng and Honglin Wan    
Efficient document recognition and sharing remain challenges in the healthcare, insurance, and finance sectors. One solution to this problem has been the use of deep learning techniques to automatically extract structured information from paper documents... ver más
Revista: Applied Sciences