Inicio  /  Agriculture  /  Vol: 12 Par: 6 (2022)  /  Artículo
ARTÍCULO
TITULO

Design of and Experiments with an Automatic Cuttage Device for an Arch Shed Pillar with Force Feedback

Kezhou Chen    
Xing Liu    
Shiteng Jin    
Longfei Li    
Xin He    
Tao Wang    
Guopeng Mi    
Yinggang Shi and Wei Li    

Resumen

In order to realize the automatic cutting of arch shed pillars, an automatic cuttage device for an arch shed pillar with force feedback was designed in this study. First, the wind resistance of the arch shed was simulated and analyzed using ANSYS, and the cuttage depth of the arch shed pillar was determined. According to the environment for the cuttage operation of the arch shed pillar and the agronomic requirements, such as the arch shed span, arch shed height, and cuttage depth, the function, structure, and basic design parameters of the arch shed automatic cuttage device were determined. Then, to reduce the damage rate of the pillar and achieve equal-depth cuttage, a force feedback system for the actuator of the cuttage device was constructed to estimate the cuttage resistance and depth in real time. To reduce the impact of the starting and stopping of each motor in the actuator, trajectory planning of the execution end in the pillar transfer stage was performed in the Cartesian coordinate system. The motion law of portal trajectory based on the Láme curve was analyzed, and MATLAB simulations were used to solve the relevant motion parameters. In addition, the modality of key components of the cuttage device was simulated and analyzed by using the SOLIDWORKS simulation plug-in. Finally, the experimental prototype was constructed according to the simulation results. The simulation and field cuttage experiments showed that the cuttage device produced equal-depth cuttage for the arch shed pillar, where the depth of the arch shed pillar was 10 cm, the average cuttage time of a single pillar was 6.2 s, and the error of the cuttage depth was ±0.5 cm in wet soil. The operation of the device was stable, as evidenced by the smooth and mutation-free operation trajectory and speed curve of the execution end. The results of the modal experiment suggest that resonance would not occur during the operation for resonance frequencies between 303 Hz and 565 Hz. This arch shed pillar automatic cuttage device has an optimal operation performance and meets the agronomic requirements of arch shed pillar cuttage.

 Artículos similares

       
 
Zhaoyang Guo, Caiyun Lu, Jin He, Qingjie Wang, Hang Li and Chengkun Zhai    
Aiming to solve the problems of excessive straw residue and large soil loss in the seeding belt of the straw row-sorting operation when the full volume of straw is crushed and returned to the field in the northeastern region of China, an active spiral pu... ver más
Revista: Agriculture

 
Yichao Wang, Jiaxi Zhang, Shilong Shen, Jinming Li, Yanjun Huo and Zhenwei Wang    
In order to address the common difficulties in pulling and harvesting whole cotton stalks, such as high pulling resistance, high miss-pulling rate, and high breakage rate, which severely hinder the recycling of cotton stalks, three different pulling mech... ver más
Revista: Agriculture

 
Dongdong Jia, Wenzhong Guo, Lichun Wang, Wengang Zheng and Guohua Gao    
In the plant factories using stereoscopic cultivation systems, the cultivation plate transport equipment is an essential component of production. However, there are problems, such as high labor intensity, low levels of automation, and poor versatility of... ver más
Revista: Agriculture

 
Weiwei Yuan, Wanxia Yang, Liang He, Tingwei Zhang, Yan Hao, Jing Lu and Wenbo Yan    
The extraction of entities and relationships is a crucial task in the field of natural language processing (NLP). However, existing models for this task often rely heavily on a substantial amount of labeled data, which not only consumes time and labor bu... ver más
Revista: Agriculture

 
Bin Li, Xiaolong Gao, Xuegeng Chen, Yang Liu, Shiguo Wang and Yuncheng Dong    
To solve the problems associated with the poor harvesting ability of existing sunflower harvester cutting tables, and high seed drop rates, we designed a sunflower cutting table that can greatly improve the operational performance of sunflower combine ha... ver más
Revista: Agriculture