Inicio  /  Applied Sciences  /  Vol: 10 Par: 16 (2020)  /  Artículo
ARTÍCULO
TITULO

Adaptive Trajectory Tracking Safety Control of Air Cushion Vehicle with Unknown Input Effective Parameters

Mingyu Fu    
Lijing Dong    
Yujie Xu and Chenglong Wang    

Resumen

This paper studies the trajectory tracking control problem of an Air Cushion Vehicle (ACV) with yaw rate error constraint, input effective parameters, model uncertainties and external wind disturbance. Firstly, based on the four-degree of freedom (DOF) vector mathematical mode of ACV, the radial basis function neural network (RBFNN) is adopted to provide the estimation of model uncertainties and external wind disturbance. Then, an adaptive Nussbaum gain-based approach is incorporated with the backstepping control scheme to handle the unknown input efficient parameters. To avoid the complicated derivative of the virtual control laws, the command filter and auxiliary systems are introduced in backstepping. Furthermore, combing a barrier Lyapunov function (BLF) with backstepping technique, a novel trajectory tracking safety controller is designed to ensure all signals of the closed-loop system are uniformly ultimately bounded, while the yaw rate error is within the pre-set safe range. Finally, the simulation results show the effectiveness of the controller scheme.

 Artículos similares

       
 
Yahya Ali Fageehi and Abdulnaser M. Alshoaibi    
The primary focus of this paper is to investigate the application of ANSYS Workbench 19.2 software?s advanced feature, known as Separating Morphing and Adaptive Remeshing Technology (SMART), in simulating the growth of cracks within structures that incor... ver más
Revista: Applied Sciences

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms

 
Rongjun Mu, Yanpeng Deng and Peng Wu    
In this paper, a novel guidance algorithm based on adaptive convex optimization is proposed to ensure robustness in the uncertainty of a lunar lander?s parameters and satisfy the constraints of terminal position, velocity, attitude, and thrust. To addres... ver más
Revista: Aerospace

 
Aminurrashid Noordin, Mohd Ariffanan Mohd Basri and Zaharuddin Mohamed    
The lightweight nature of micro air vehicles (MAVs) makes them highly sensitive to perturbations, thus emphasizing the need for effective control strategies that can sustain attitude stability throughout translational movement. This study evaluates the p... ver más
Revista: Aerospace

 
Yanwei Zhang, Hao Zheng, Jing Xu and Zhonglai Wang    
Clapping-wing micro air vehicles (CWMAVs) face many control problems due to their lightweight design and susceptibility to disturbances. This study proposes a radial basis function (RBF) model-based adaptive model predictive control (AMPC) for trajectory... ver más
Revista: Aerospace