Inicio  /  Applied Sciences  /  Vol: 14 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Study on the Damage Characteristics and Internal Variable Modeling of Single-Fracture Sandstone under the Coupling Effect of Freeze?Thaw and Fatigue Load

Kun Zhang    
Pengbo Chang    
Jianxi Ren    
Zheng Liu and Ke Wang    

Resumen

The fractured rock mass in the western cold region is affected by freezing and thawing disasters and is prone to local damage and fracture along the fissures? ends. The fatigue damage induced by repeated frost heave and traffic loads seriously endangers the stability of cold region roadbed. This paper selects sandstone as the research object. Firstly, 20 freeze?thaw cycles were performed on fractured sandstone samples with different inclination angles of 30°, 45°, 60°, and 90°. Subsequently, triaxial compression and triaxial fatigue loading tests were conducted to explore the mechanical properties and fracture morphology evolution mechanism during the compression process of freeze?thaw fractured sandstone. Nuclear magnetic resonance technology (NMR) was used to measure the H-containing fluid inside rock pores. The microscopic damage characteristics inside the rock were analyzed from the NMR T2 relaxation spectrum signal and pore size distribution characteristics. Based on the internal variable theory of continuum mechanics, a fatigue model of freeze?thaw fractured sandstone with different inclination angles was established. The results show that sandstone strength was negatively correlated with the fracture dip angle, and the axial deformation and shear failure angle were positively correlated with the fracture dip angle. The mechanical properties of the sandstone were deteriorated by fatigue loading. When the crack angle was 90°, the fatigue failure strength of the rock sample was the lowest. The T2 spectrum distribution of the fractured sandstone mainly had three peaks and the pore size was mainly medium and small pores. There was a small leftward shift after freeze?thaw cycles and fatigue loading. The T2 spectrum area was significantly affected by fatigue loading, with the highest rate of change at a crack angle of 30°. Through the fine correspondence between the axial residual deformation and the deformation modulus, a fatigue model with different crack inclination angles was established using the axial residual deformation as the internal variable, and the rationality of the model was verified by fatigue loading tests.

 Artículos similares

       
 
Ulrich A. Ngamalieu-Nengoue, Pedro L. Iglesias-Rey, F. Javier Martínez-Solano and Daniel Mora-Meliá    
Extreme rainfall events cause immense damage in cities where drainage networks are nonexistent or deficient and thus unable to transport rainwater. Infrastructure adaptations can reduce flooding and help the population avoid the associated negative conse... ver más
Revista: Water

 
Ying Wang, Yahan Shi, Xiaofeng Xu and Yunjie Zhu    
With the continuous advancement of the economy, the issues of resource scarcity and environmental damage are becoming increasingly severe. For example, in terms of water resources, the problems of environmental pollution and ecological imbalance in the w... ver más
Revista: Water

 
Artem Marchenko, Rolands Kromanis and André G. Dorée    
Temperature is the main driver of bridge response. It is continuously applied and may have complex distributions across the bridge. Daily temperature loads force bridges to undergo deformations that are larger than or equal to peak-to-peak traffic loads.... ver más
Revista: Infrastructures

 
Bikram Kesharee Patra, Rocio L. Segura and Ashutosh Bagchi    
This study addresses the vital issue of the variability associated with modeling decisions in dam seismic analysis. Traditionally, structural modeling and simulations employ a progressive approach, where more complex models are gradually incorporated. Fo... ver más
Revista: Infrastructures

 
Zhiyong Yang, Feng Xiong, Yaoyao Pei, Zhi Chen, Chuanhai Zhan, Enjie Hu and Guanghao Zhang    
The identification of stay cable icing is crucial for robot deicing to improve efficiency and prevent damage to stay cables. Therefore, it is significant to identify the areas and degree of icing in the images of stay cables. This study proposed a two-st... ver más
Revista: Applied Sciences