Inicio  /  Applied Sciences  /  Vol: 13 Par: 24 (2023)  /  Artículo
ARTÍCULO
TITULO

Temporal Convolutional Network-Based Axle Load Estimation from Pavement Vibration Data

Zeying Bian    
Mengyuan Zeng    
Hongduo Zhao    
Mu Guo and Juewei Cai    

Resumen

Measuring the axle loads of vehicles with more accuracy is a crucial step in weight enforcement and pavement condition assessment. This paper proposed a vibration-based method, which has an extended sensing range, high temporal sampling rate, and dense spatial sampling rate, to estimate axle loads in concrete pavement using distributed optical vibration sensing (DOVS) technology. Temporal convolutional networks (TCN), which consist of non-causal convolutional layers and a concatenate layer, were proposed and trained by over 6000 samples of vibration data and ground truth of axle loads. Moreover, the TCN could learn the complex inverse mapping between pavement structure inputs and outputs. The performance of the proposed method was calibrated in two field tests with various conditions. The results demonstrate that the proposed method obtained estimated axle loads within 11.5% error, under diverse circumstances that consisted of different pavement types and loads moving at speeds ranging from 0~35 m/s. The proposed method demonstrates significant promise in the field of axle load reconstruction and estimation. Its error, closely approaching the 10% threshold specified by LTPP, underscores its efficacy. Additionally, the method aligns with the standards set by Cost-323, with an error level-up to category C. This indicates its capability to provide valuable support in the assessment and decision-making processes related to pavement structure conditions.

 Artículos similares

       
 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Yin Tang, Lizhuo Zhang, Dan Huang, Sha Yang and Yingchun Kuang    
In view of the current problems of complex models and insufficient data processing in ultra-short-term prediction of photovoltaic power generation, this paper proposes a photovoltaic power ultra-short-term prediction model named HPO-KNN-SRU, based on a S... ver más
Revista: Applied Sciences

 
Zhihong Chang, Chunsheng Liu and Jianmin Jia    
As an important component of intelligent transportation-management systems, accurate traffic-parameter prediction can help traffic-management departments to conduct effective traffic management. Due to the nonlinearity, complexity, and dynamism of highwa... ver más
Revista: Applied Sciences