ARTÍCULO
TITULO

Deep Learning for Deep Waters: An Expert-in-the-Loop Machine Learning Framework for Marine Sciences

Igor Ryazanov    
Amanda T. Nylund    
Debabrota Basu    
Ida-Maja Hassellöv and Alexander Schliep    

Resumen

Driven by the unprecedented availability of data, machine learning has become a pervasive and transformative technology across industry and science. Its importance to marine science has been codified as one goal of the UN Ocean Decade. While increasing amounts of, for example, acoustic marine data are collected for research and monitoring purposes, and machine learning methods can achieve automatic processing and analysis of acoustic data, they require large training datasets annotated or labelled by experts. Consequently, addressing the relative scarcity of labelled data is, besides increasing data analysis and processing capacities, one of the main thrust areas. One approach to address label scarcity is the expert-in-the-loop approach which allows analysis of limited and unbalanced data efficiently. Its advantages are demonstrated with our novel deep learning-based expert-in-the-loop framework for automatic detection of turbulent wake signatures in echo sounder data. Using machine learning algorithms, such as the one presented in this study, greatly increases the capacity to analyse large amounts of acoustic data. It would be a first step in realising the full potential of the increasing amount of acoustic data in marine sciences.

 Artículos similares

       
 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Ryota Higashimoto, Soh Yoshida and Mitsuji Muneyasu    
This paper addresses the performance degradation of deep neural networks caused by learning with noisy labels. Recent research on this topic has exploited the memorization effect: networks fit data with clean labels during the early stages of learning an... ver más
Revista: Applied Sciences

 
Hamed Raoofi, Asa Sabahnia, Daniel Barbeau and Ali Motamedi    
Traditional methods of supervision in the construction industry are time-consuming and costly, requiring significant investments in skilled labor. However, with advancements in artificial intelligence, computer vision, and deep learning, these methods ca... ver más