Inicio  /  Water  /  Núm: Vol. 11 Par: PP (PP)  /  Artículo
ARTÍCULO
TITULO

Contribution of Biological Effects to the Carbon Sources/Sinks and the Trophic Status of the Ecosystem in the Changjiang (Yangtze) River Estuary Plume in Summer as Indicated by Net Ecosystem Production Variations

Yifan Zhang    
Dewang Li    
Kui Wang and Bin Xue    

Resumen

We conducted 24-h real-time monitoring of temperature, salinity, dissolved oxygen, and nutrients in the near-shore (M4-1), front (M4-8), and offshore (M4-13) regions of the 31° N section of the Changjiang (Yangtze) River estuary plume in summer. Carbon dioxide partial pressure changes caused by biological processes (pCO2bio) and net ecosystem production (NEP) were calculated using a mass balance model and used to determine the relative contribution of biological processes (including the release of CO2 from organic matter degradation by microbes and CO2 uptake by phytoplankton) to the CO2 flux in the Changjiang River estuary plume. Results show that seawater in the near-shore region is a source of atmospheric CO2, and the front and offshore regions generally serve as atmospheric CO2 sinks. In the mixed layer of the three regions, pCO2bio has an overall positive feedback effect on the air?sea CO2 exchange flux. The contribution of biological processes to the air?sea CO2 exchange flux (Cont) in the three regions changes to varying extents. From west to east, the daily means (±standard deviation) of the Cont are 32% (±40%), 34% (±216%), and 9% (±13%), respectively. In the front region, the Cont reaches values as high as 360%. Under the mixed layer, the daily means of potential Conts in the near-shore, front, and offshore regions are 34% (±43%), 8% (±13%), and 19% (±24%), respectively. The daily 24-hour means of NEP show that the near-shore region is a heterotrophic system, the front and offshore regions are autotrophic systems in the mixed layer, and all three regions are heterotrophic under the mixed layer.

 Artículos similares