ARTÍCULO
TITULO

Big?Little Adaptive Neural Networks on Low-Power Near-Subthreshold Processors

Zichao Shen    
Neil Howard and Jose Nunez-Yanez    

Resumen

This paper investigates the energy savings that near-subthreshold processors can obtain in edge AI applications and proposes strategies to improve them while maintaining the accuracy of the application. The selected processors deploy adaptive voltage scaling techniques in which the frequency and voltage levels of the processor core are determined at the run-time. In these systems, embedded RAM and flash memory size is typically limited to less than 1 megabyte to save power. This limited memory imposes restrictions on the complexity of the neural networks model that can be mapped to these devices and the required trade-offs between accuracy and battery life. To address these issues, we propose and evaluate alternative ?big?little? neural network strategies to improve battery life while maintaining prediction accuracy. The strategies are applied to a human activity recognition application selected as a demonstrator that shows that compared to the original network, the best configurations obtain an energy reduction measured at 80% while maintaining the original level of inference accuracy.

 Artículos similares

       
 
Bangchu Zhang, Yiyong Liang, Shuitao Rao, Yu Kuang and Weiyu Zhu    
In hypersonic flight control, characterized by challenges posed by input saturation, model parameter uncertainties, and external disturbances, this paper introduces a pioneering anti-input saturation control method based on RBFNN adaptivity. We have deve... ver más
Revista: Aerospace

 
Andrea D?Ambrosio and Roberto Furfaro    
This paper demonstrates the utilization of Pontryagin Neural Networks (PoNNs) to acquire control strategies for achieving fuel-optimal trajectories. PoNNs, a subtype of Physics-Informed Neural Networks (PINNs), are tailored for solving optimal control pr... ver más
Revista: Aerospace

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms

 
Haoyu Lin, Pengkun Quan, Zhuo Liang, Dongbo Wei and Shichun Di    
In the context of automatic charging for electric vehicles, collision localization for the end-effector of robots not only serves as a crucial visual complement but also provides essential foundations for subsequent response design. In this scenario, dat... ver más
Revista: Applied Sciences

 
Zilin Zhao, Zhi Cai, Mengmeng Chang and Zhiming Ding    
Unconventional events exacerbate the imbalance between regional transportation demand and limited road network resources. Scientific and efficient path planning serves as the foundation for rapidly restoring equilibrium to the road network. In real large... ver más
Revista: Applied Sciences