Portada: Infraestructura para la Logística Sustentable 2050
DESTACADO | CPI Propone - Resumen Ejecutivo

Infraestructura para el desarrollo que queremos 2026-2030

Elaborado por el Consejo de Políticas de Infraestructura (CPI), este documento constituye una hoja de ruta estratégica para orientar la inversión y la gestión de infraestructura en Chile. Presenta propuestas organizadas en siete ejes estratégicos, sin centrarse en proyectos específicos, sino en influir en las decisiones de política pública para promover una infraestructura que conecte territorios, genere oportunidades y eleve la calidad de vida de la población.
ARTÍCULO
TITULO

Spatial-Temporal Diffusion Convolutional Network: A Novel Framework for Taxi Demand Forecasting

Aling Luo    
Boyi Shangguan    
Can Yang    
Fan Gao    
Zhe Fang and Dayu Yu    

Resumen

Taxi demand forecasting plays an important role in ride-hailing services. Accurate taxi demand forecasting can assist taxi companies in pre-allocating taxis, improving vehicle utilization, reducing waiting time, and alleviating traffic congestion. It is a challenging task due to the highly non-linear and complicated spatial-temporal patterns of the taxi data. Most of the existing taxi demand forecasting methods lack the ability to capture the dynamic spatial-temporal dependencies among regions. They either fail to consider the limitations of Graph Neural Networks or do not efficiently capture the long-term temporal dependencies. In this paper, we propose a Spatial-Temporal Diffusion Convolutional Network (ST-DCN) for taxi demand forecasting. The dynamic spatial dependencies are efficiently captured through a two-phase graph diffusion convolutional network where the attention mechanism is introduced. Moreover, a novel temporal convolution module is designed to learn various ranges of temporal dependencies, including recent, daily, and weekly periods. Inside the module, convolution layers are stacked to handle very long sequences. Experimental results on two large-scale real-world taxi datasets from New York City (NYC) and Chengdu demonstrate that our method significantly outperforms seven state-of-the-art baseline methods.

Artículos similares

Hemos preparados una selección de otros artículos que pudieran ser de tu interés
Maria Vasilyeva, Sergei Stepanov, Alexey Sadovski and Stephen Henry    
We consider the multispecies model described by a coupled system of diffusion?reaction equations, where the coupling and nonlinearity are given in the reaction part. We construct a semi-discrete form using a finite volume approximation by space. The full... ver más
Revista: Computation
Muhamad Syafiq Abdul Ghani,Norhaslinda Zainal Abidin,Rosshairy Abd Rahman,Antoni Wibowo,Azatuliffah Alwi     Pág. pp. 18 - 31
The improvement of technology brings a significant impact on transportation industries. The taxi industry has undergone tremendous changes with the existent of e-hailing service in the industry. Due to the introduction of mobile applications, e-hailing s... ver más
Ying Xu and Dongsheng Li    
Taxi demand prediction is one of the key factors in making online taxi hailing services more successful and more popular. Accurate taxi demand prediction can bring various advantages including, but not limited to, enhancing user experience, increasing ta... ver más
Jinjun Tang, Fan Gao, Fang Liu, Wenhui Zhang and Yong Qi    
Taxis are an important part of the urban public transit system. Understanding the spatio-temporal variations of taxi travel demand is essential for exploring urban mobility and patterns. The purpose of this study is to use the taxi Global Positioning Sys... ver más
Revista: Sustainability
Haiqiang Yang and Zihan Li    
The objective imbalance between the taxi supply and demand exists in various areas of the city. Accurately predicting this imbalance helps taxi companies with dispatching, thereby increasing their profits and meeting the travel needs of residents. The ap... ver más