Inicio  /  Hydrology  /  Vol: 5 Par: 1 (2018)  /  Artículo
ARTÍCULO
TITULO

Changes in Extremes of Temperature, Precipitation, and Runoff in California?s Central Valley During 1949?2010

Minxue He    
Mitchel Russo    
Michael Anderson    
Peter Fickenscher    
Brett Whitin    
Andrew Schwarz and Elissa Lynn    

Resumen

This study presents a comprehensive trend analysis of precipitation, temperature, and runoff extremes in the Central Valley of California from an operational perspective. California is prone to those extremes of which any changes could have long-lasting adverse impacts on the society, economy, and environment of the State. Available long-term operational datasets of 176 forecasting basins in six forecasting groups and inflow to 12 major water supply reservoirs are employed. A suite of nine precipitation indices and nine temperature indices derived from historical (water year 1949?2010) six-hourly precipitation and temperature data for these basins are investigated, along with nine indices based on daily unimpaired inflow to those 12 reservoirs in a slightly shorter period. Those indices include daily maximum precipitation, temperature, runoff, snowmelt, and others that are critical in informing decision making in water resources management. The non-parametric Mann-Kendall trend test is applied with a trend-free pre-whitening procedure in identifying trends in these indices. Changes in empirical probability distributions of individual study indices in two equal sub-periods are also investigated. The results show decreasing number of cold nights, increasing number of warm nights, increasing maximum temperature, and increasing annual mean minimum temperature at about 60% of the study area. Changes in cold extremes are generally more pronounced than their counterparts in warm extremes, contributing to decreasing diurnal temperature ranges. In general, the driest and coldest Tulare forecasting group observes the most consistent changes among all six groups. Analysis of probability distributions of temperature indices in two sub-periods yields similar results. In contrast, changes in precipitation extremes are less consistent spatially and less significant in terms of change rate. Only four indices exhibit statistically significant changes in less than 10% of the study area. On the regional scale, only the American forecasting group shows significant decreasing trends in two indices including maximum six-hourly precipitation and simple daily intensity index. On the other hand, runoff exhibits strong resilience to the changes noticed in temperature and precipitation extremes. Only the most southern reservoir (Lake Isabella) shows significant earlier peak timing of snowmelt. Additional analysis on runoff indices using different trend analysis methods and different analysis periods also indicates limited changes in these runoff indices. Overall, these findings are meaningful in guiding reservoir operations and water resources planning and management practices.

 Artículos similares

       
 
Taylor Joyal, Alexander K. Fremier and Jan Boll    
In the humid tropics, forest conversion and climate change threaten the hydrological function and stationarity of watersheds, particularly in steep terrain. As climate change intensifies, shifting precipitation patterns and expanding agricultural and pas... ver más
Revista: Hydrology

 
Assane Ndiaye, Mamadou Lamine Mbaye, Joël Arnault, Moctar Camara and Agnidé Emmanuel Lawin    
Extreme hydroclimate events usually have harmful impacts of human activities and ecosystems. This study aims to assess trends and significant changes in rainfall and river flow over the Senegal River Basin (SRB) and its upper basin during the 1982?2021 p... ver más
Revista: Hydrology

 
Yelbek Bakhitovich Utepov, Timoth Mkilima, Aliya Kairatovna Aldungarova, Zhanbolat Anuarbekovich Shakhmov, Sungat Berkinovich Akhazhanov, Nargul Amanovna Saktaganova, Uliya Baktybaevna Abdikerova and Aigul Moldashevna Budikova    
The study examined the intricate relationships between embankment slope configurations, toe drain designs, and drawdown scenarios. It utilized a unique combination of numerical, physical, and mathematical models. The investigation involved 16 numerical m... ver más
Revista: Infrastructures

 
Dibesh Khadka, Mukand S. Babel and Ambili G. Kamalamma    
Climate change (CC) and land-use change (LUC) will alter a basin?s hydrological processes and water balance. Quantifying their significance is imperative in formulating appropriate countermeasures and management plans. This study assesses projected chang... ver más
Revista: Water

 
Juan Carlos Jaimes-Correa, Francisco Muñoz-Arriola and Shannon Bartelt-Hunt    
Changing water supplies and demands, inherent to climate fluctuations and human activities, are pushing for a paradigm shift in water management worldwide. The occurrence of extreme hydrometeorological and climate events such as extended wet periods and ... ver más
Revista: Hydrology