Inicio  /  Applied Sciences  /  Vol: 13 Par: 12 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation on Thermoelectric Cooling of Core Power Devices in Air Conditioning

Jiang Wang    
Kai Hu    
Kechen Tang    
Yubing Xing    
Yani Xiao    
Yutian Liu    
Yonggao Yan and Dongwang Yang    

Resumen

Air conditioning has become a necessity in people?s daily life. The performance of the compressor determines the energy efficiency ratio of this electrical equipment, but the heat generated during the operation of its internal core power components will greatly limit its performance release, so it is urgent to carry out research on the heat dissipation of power devices. In this work, we explore the application of thermoelectric coolers (TECs) in the field of power device heat dissipation through finite element simulation. First, we geometrically modeled the structure and typical operating conditions of core power devices in air conditioners. We compared the temperature fields in air-cooling and TEC active cooling modes for high-power-consumption power devices in a 319 K operating environment. The simulation results show that in the single air-cooling mode, the maximum temperature of the 173.8 W power device reached 394.4 K, and the average temperature reached 373.9 K, which exceeds its rated operating temperature of 368.1 K. However, the maximum and average temperature of the power device dropped to 331.8 K and 326.5 K, respectively, at an operating current of 7.5 A after adding TECs, which indicates that TEC active cooling has a significant effect on the temperature control of the power device. Furthermore, we studied the effect of the TEC working current on the temperature control effect of power devices to better understand the reliability of the TECs. The results show that TECs have a minimum working current of 5 A, which means it has no significant cooling effect when the working current is less than 5 A, and when increasing the current to 10 A, the average temperature of the power device can be reduced to 292.9 K. This study provides a meaningful exploration of the application of TECs in chip temperature control and heat dissipation, providing a new solution for chip thermal management and accurate temperature control.

 Artículos similares

       
 
Mosaad Ali Hussein Ali, Farag M. Mewafy, Wei Qian, Ajibola Richard Faruwa, Ali Shebl, Saleh Dabaa and Hussein A. Saleem    
The effective detection and monitoring of mining tailings? leachates (MTLs) plays a pivotal role in environmental protection and remediation efforts. Electrical resistivity tomography (ERT) is a non-invasive technique widely employed for mapping subsurfa... ver más
Revista: Water

 
Fei Gao, Yu Zhang, Chang Chen, Xiaosen Li and Zhaoyang Chen    
The effectiveness of horizontal well drilling in improving the gas recovery efficiency of hydrate production makes it a promising technology for commercial exploitation. However, during horizontal well drilling in hydrate reservoirs, it is crucial to con... ver más

 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más

 
Tao Wang, Yu Xiang, Liyuan Liu and Wang Xiong    
Relying on the Mawan undersea large-diameter, dual-line, mud?water-balanced shield tunnel project and focusing on the characteristics of the tunnel, such as the complex geological conditions at the expected intersection location and the existence of a su... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más