Inicio  /  Drones  /  Vol: 4 Par: 1 (2020)  /  Artículo
ARTÍCULO
TITULO

Prediction of Optical and Non-Optical Water Quality Parameters in Oligotrophic and Eutrophic Aquatic Systems Using a Small Unmanned Aerial System

Juan G. Arango and Robert W. Nairn    

Resumen

The purpose of this study was to create different statistically reliable predictive algorithms for trophic state or water quality for optical (total suspended solids (TSS), Secchi disk depth (SDD), and chlorophyll-a (Chl-a)) and non-optical (total phosphorus (TP) and total nitrogen (TN)) water quality variables or indicators in an oligotrophic system (Grand River Dam Authority (GRDA) Duck Creek Nursery Ponds) and a eutrophic system (City of Commerce, Oklahoma, Wastewater Lagoons) using remote sensing images from a small unmanned aerial system (sUAS) equipped with a multispectral imaging sensor. To develop these algorithms, two sets of data were acquired: (1) In-situ water quality measurements and (2) the spectral reflectance values from sUAS imagery. Reflectance values for each band were extracted under three scenarios: (1) Value to point extraction, (2) average value extraction around the stations, and (3) point extraction using kriged surfaces. Results indicate that multiple variable linear regression models in the visible portion of the electromagnetic spectrum best describe the relationship between TSS (R2 = 0.99, p-value = <0.01), SDD (R2 = 0.88, p-value = <0.01), Chl-a (R2 = 0.85, p-value = <0.01), TP (R2 = 0.98, p-value = <0.01) and TN (R2 = 0.98, p-value = <0.01). In addition, this study concluded that ordinary kriging does not improve the fit between the different water quality parameters and reflectance values.

 Artículos similares

       
 
Tiziana Di Lorenzo and Diana Maria Paola Galassi    
The average global temperature is predicted to increase by 3 °C by the end of this century due to human-induced climate change. The overall metabolism of the aquatic biota will be directly affected by rising temperatures and associated changes. Since the... ver más
Revista: Water