Inicio  /  Applied Sciences  /  Vol: 11 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

Computationally Efficient Models of High Pressure Rolling for Wire Arc Additively Manufactured Components

Valeriy Gornyakov    
Yongle Sun    
Jialuo Ding and Stewart Williams    

Resumen

High pressure multi-layer rolling is an effective method to reduce residual stress and distortion in metallic components built by wire arc additive manufacturing (WAAM). However, the mechanisms of the reduction in residual stress and distortion during multi-layer rolling are not well understood. Conventional finite element models for rolling are highly inefficient, hindering the simulation of multi-layer rolling for large WAAM components. This study aims to identify the most suitable modelling technique for finite element analysis of large WAAM component rolling. Four efficient rolling models were developed, and their efficiency and accuracy were compared with reference to a conventional large-scale rolling model (i.e., control model) for a WAAM built wall. A short-length transient model with fewer elements than the control model was developed to reduce computational time. Accurate predictions of stress and strain and a reduction in computational time by 96.5% were achieved using the short-length model when an implicit method for numerical solution was employed, while similar efficiency but less accurate prediction was obtained when an explicit solution method was adopted. A Eulerian steady-state model was also developed, which was slightly less efficient (95.91% reduction in computational time) but was much less accurate due to unrealistic representation of rolling process. The applicability of a 2D rolling model was also examined and it was found that the 2D model is highly efficient (99.52% time reduction) but less predictive due to the 2D simplification. This study also shows that the rigid roller adopted in the models is beneficial for improving efficiency without sacrificing accuracy.

 Artículos similares

       
 
Qing Li, Decheng Zuo, Yi Feng and Dongxin Wen    
Backpack computers require powerful, intelligent computing capabilities for field wearables while taking energy consumption into careful consideration. A recommended solution for this demand is the CPU + NPU-based SoC. In many wearable intelligence appli... ver más
Revista: Applied Sciences

 
Mohan Kumar Gajendran, Ijaz Fazil Syed Ahmed Kabir, Sudhakar Vadivelu and E. Y. K. Ng    
As wind energy continues to be a crucial part of sustainable power generation, the need for precise and efficient modeling of wind turbines, especially under yawed conditions, becomes increasingly significant. Addressing this, the current study introduce... ver más

 
Kristoffer Vinther Olesen, Ahcène Boubekki, Michael C. Kampffmeyer, Robert Jenssen, Anders Nymark Christensen, Sune Hørlück and Line H. Clemmensen    
The analysis of maritime traffic patterns for safety and security purposes is increasing in importance and, hence, Vessel Traffic Service operators need efficient and contextualized tools for the detection of abnormal maritime behavior. Current models la... ver más

 
Amir Barghi and Daryl DeFord    
The Stirling numbers for graphs provide a combinatorial interpretation of the number of cycle covers in a given graph. The problem of generating all cycle covers or enumerating these quantities on general graphs is computationally intractable, but recent... ver más
Revista: Algorithms

 
Hayat Ullah and Arslan Munir    
The recognition of human activities using vision-based techniques has become a crucial research field in video analytics. Over the last decade, there have been numerous advancements in deep learning algorithms aimed at accurately detecting complex human ... ver más
Revista: Algorithms